

Accepted Manuscript

Improved outcomes in patients with retinal detachment following implementation of a silicone oil registry and phone call reminder system

Dahui Ma, MD, Wei Ma, MD, PhD, Xiuyun Liu, PhD, Jay M. Stewart, MD

PII: S2468-6530(19)30009-0

DOI: <https://doi.org/10.1016/j.oret.2019.01.013>

Reference: ORET 459

To appear in: *Ophthalmology Retina*

Received Date: 6 September 2018

Revised Date: 16 January 2019

Accepted Date: 18 January 2019

Please cite this article as: Ma D., Ma W., Liu X. & Stewart J.M, Improved outcomes in patients with retinal detachment following implementation of a silicone oil registry and phone call reminder system, *Ophthalmology Retina* (2019), doi: <https://doi.org/10.1016/j.oret.2019.01.013>.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 **Improved outcomes in patients with retinal detachment**
2 **following implementation of a silicone oil registry and phone**
3 **call reminder system**

4 Dahui Ma, MD,^{1,2} Wei Ma, MD, PhD,^{1,3} Xiuyun Liu, PhD,⁴ Jay M Stewart, MD¹

5

6 ¹Department of Ophthalmology, University of California, San Francisco,
7 Department of Ophthalmology, San Francisco, CA

8 ²Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan
9 University, School of Optometry, Shenzhen University

10 ³ State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun
11 Yat-Sen University, Guangzhou, China

12 ⁴ University of California, San Francisco, Department of Physiological Nursing,
13 San Francisco, CA

14

15 Corresponding author:

16 Jay M. Stewart, MD

17 University of California, San Francisco

18 Department of Ophthalmology

19 10 Koret Way, K301

20 San Francisco, CA 94143-0730

21 Tel. (415) 206-3123

22 jay.stewart@ucsf.edu

23

24

25 Financial Support: That Man May See, Inc., and Research to Prevent

26 Blindness

27 Conflict of Interest: no conflicting relationship exists for any author

28

29 Word count: 2,064

30

31 **Abstract**

32 *Purpose:* This retrospective study was performed to assess the clinical impact
33 in reducing silicone-oil related complications such as keratopathy of a registry
34 and appointment reminder system for patients with complicated retinal
35 detachment (RD) who underwent pars plana vitrectomy (PPV) with silicone oil
36 (SO) tamponade.

37 *Design:* Retrospective cohort study

38 *Participants:* A total of 87 eyes of 87 patients who received SO tamponade
39 were included.

40 *Methods:* The study was carried out at Zuckerberg San Francisco General
41 Hospital and Trauma Center (ZSFG). Patients were divided into those who
42 received SO either before (control group, n=48) or after (treatment group,
43 n=39) implementation of a SO registry and patient reminder system in 2014.

44 Patient records were reviewed to identify clinical characteristics and outcomes.

45 *Main Outcome Measures:* The primary outcome measure was the difference in
46 the rate of loss to follow-up, before versus after the implementation of the
47 registry and reminder system. Secondary outcomes were the duration of SO
48 tamponade, keratopathy rate, and intraocular pressure (IOP) at the last visit
49 before SO removal.

50 *Results:* Forty-eight patients were included in the control group, and thirty-nine
51 in the treatment group. The number of patients lost to follow up was 23

52 (47.9%) in the control group versus six (15.4%) in the treatment group
53 (p=0.0015). The mean duration before SO removal was 79.6 ± 91.7 weeks in
54 control group, and that of treatment group was 36.3 ± 31.5 weeks (Mean \pm SD)
55 (p=0.015). Keratopathy developed in 33.3% of patients in the control group
56 and in 12.8% in the treatment group (p=0.0425). Mean IOP at last visit before
57 SO removal was 13.0 ± 5.2 mmHg (Mean \pm SD) in control group and 13.3 ± 7
58 mmHg (Mean \pm SD) in treatment group (p>0.05).

59 *Conclusions:* A phone call appointment reminder system for patients with
60 complicated RD who underwent PPV and SO tamponade reduced the rate of
61 loss to follow-up and the duration of silicone oil tamponade, correlating with a
62 reduction in the rate of keratopathy.

63

64

65

66

67

68

69

70

71 **Introduction**

72

73 Complex retinal detachment (RD) associated with proliferative
74 vitreoretinopathy (PVR), giant retinal tear (GRT), proliferative diabetic
75 retinopathy (PDR), ocular trauma and other causes can lead to significant
76 vision loss and even legal blindness. Since it was first described in 1962,¹
77 silicone oil (SO) has been demonstrated to be an effective intraocular
78 tamponade and has become part of the standard technique for complex retinal
79 detachment repair,^{2,3} a frequent choice for vitreous replacement following pars
80 plana vitrectomy (PPV) in these complex cases.⁴⁻⁷ However, it is still not a
81 perfect or ideal permanent vitreous replacement because of its possible
82 complications such as keratopathy, glaucoma, and cataract due to long term
83 exposure.⁸ In clinical practice, although it may be necessary to leave SO in the
84 vitreous cavity as long as possible in a small group of patients with unusually
85 complex findings, for most patients, silicone oil is usually removed after 3-6
86 months in order to avoid complications.⁹ Therefore, once SO is implanted in
87 the eye, the clinical status of the eye must be monitored carefully to detect any
88 complications and determine the appropriate amount of time that the SO
89 should remain in order to achieve the goal of lasting retinal reattachment. In
90 other words, regular follow-up appointments are needed in order to allow the
91 clinician to observe the patient and adjust the timing of intervention as needed.

92 Most SO-related complications relate to emulsification. Keratopathy, glaucoma
93 and cataract are the main complications of concern. The main risk factor for
94 emulsification is duration of SO tamponade, with occurrence from 5 to 24
95 months after SO injection; in most cases, emulsification is detectable within the
96 first year.¹⁰ Because of the variability in time to emulsification, regular follow-up
97 is the key to balancing the anatomical and functional status of the eye and
98 complications due to SO emulsification. Missed appointments at the surgeon's
99 office can lead to delay in treatment and unexpected complications. Although
100 many factors interfere with patient follow-up,¹¹ the most common reason for
101 missed appointments is that the patient simply forgets.¹² Thus, there are
102 various strategies including email, phone calls, letters and text messages that
103 have been used as reminders in order to reduce missed appointments.
104 Several studies have found that a personal phone call reminder can improve
105 adherence to follow-up.¹³⁻¹⁵

106 Recently, some studies have documented an improvement in patient care
107 outcomes in ophthalmology with phone call reminders in areas such as
108 glaucoma^{16,17} diabetic retinopathy¹⁸ and age-related macular degeneration.¹⁹
109 To the best of our knowledge, no study has evaluated the efficacy of a registry
110 and phone call intervention to improve the rates of adherence and treatment
111 outcomes in patients with complicated RD receiving SO tamponade. The
112 objective of this study was to evaluate the clinical significance of a follow-up

113 appointment reminder system for patients with complicated RD who underwent
114 PPV with SO tamponade.

115

116 **Methods**

117 After approval by the Human Research Protection Program at the University of
118 California, San Francisco and Zuckerberg San Francisco General Hospital and
119 Trauma Center (ZSFG), we conducted a retrospective review of a
120 prospectively collected cohort of complex RD patients who underwent PPV
121 with SO injection at ZSFG between 2006 and 2017. Part-way through that time
122 period, in 2014, the Department of Ophthalmology at ZSFG implemented a
123 phone call follow-up appointment reminder system for patients receiving SO
124 injection. Clinic staff created a prospective registry of all patients receiving
125 silicone oil injection. Once the 6-month duration of silicone oil implantation was
126 reached, staff tracked whether the patient attended their 6-month appointment
127 and whether the SO removal surgery was scheduled and completed. This was
128 in addition to standard call-backs for individual missed clinic appointments, as
129 is utilized widely in our practice and in others. In the event that the patient did
130 not attend follow-up visits, staff persisted to contact the patient by phone
131 multiple times to reschedule the appointment and confirm attendance. Staff
132 also actively communicated with surgeons to ensure that SO removal was
133 arranged and completed.

134 For the retrospective review conducted in this study, patients with complex RD
135 who underwent PPV with SO injection between 2006 and 2017 and maintained
136 an attached retina for more than three months were included. Patients were
137 divided into two groups according to the date on which the surgery was
138 performed. The control group consisted of patients who underwent the
139 procedure before 2014, prior to the implementation of the registry and phone
140 call reminder system; the treatment group consisted of patients whose surgery
141 was in 2014 or later, with the new system in use.

142 Parameters analyzed for the study included age, gender, indication for
143 surgery, duration before SO removal, time to follow-up, occurrence of
144 keratopathy, the no-show rate in the treatment group, and intraocular pressure
145 (IOP) at the last visit before SO removal. The loss to follow-up rate was
146 calculated and relates to patients who underwent PPV with SO injection who
147 disappeared from follow-up for more than 6 months and did not return for SO
148 removal at all throughout the entire study period (to the end of 2017).

149 Keratopathy was defined as corneal complications including band keratopathy,
150 corneal decompensation, and corneal opacities. A no-show was defined as a
151 patient who missed a scheduled appointment without having cancelled it
152 ahead of time. Since there was no intentional tracking of the scheduled
153 appointments in the control group, the no-show rate was only calculated for the
154 treatment group.

155 Categorical variables were compared between the two groups using SPSS
156 software (version 21, IBM, Armonk, NY, USA) for statistical analysis. An
157 independent t-test was used to compare age and the duration before SO
158 removal between the two groups. The Wilcoxon Mann-Whitney test was used
159 to compare the gender of the two groups. Results were considered significant
160 at $p < 0.05$.

161

162 **Results**

163 Patients with complex RD who underwent PPV and 5,000-centistoke SO
164 injection by the same attending physician, assisted by rotating residents and
165 fellows, in the ophthalmology department at Zuckerberg San Francisco
166 General Hospital between January 27, 2006 and June 30, 2017 were included
167 in the study. Out of these patients, 48 were included the control group (no
168 phone call reminder), and 39 patients in the treatment group (with phone call
169 reminder).

170 Baseline demographics were comparable between the two groups (Table 1).
171 There was no significant difference in age and gender between the two
172 groups. The median age in the control group was 54.4 [45.0-59.9] years, and
173 that of the treatment group was 55.0 [42.5-60.2] years. The control group
174 consisted of 36 men and 12 women, while there were 27 men and 12 women
175 in the treatment group. The number of patients with complex RD associated

176 with PVR, PDR, ocular trauma, GRT, and other causes was 14, 12, 7, 5, 9
177 respectively in the control group, and was 20, 9, 7, 3, and 0 respectively in the
178 treatment group.

179 With regard to the primary outcome measure, the number of patients lost to
180 follow up was 23 (47.9%) in the control group versus 6 (15.4%) in the
181 treatment group ($p=0.0015$) (Figure 1). The remainder in each group (25
182 controls and 33 treatment eyes) underwent SO removal. The mean duration of
183 SO in the eye before removal was 79.6 ± 91.7 weeks in the control group, and
184 in the treatment group it was 36.3 ± 31.5 weeks (mean \pm SD) ($p=0.015$) (Figure
185 2A). Mean IOP at the last visit before SO removal in the control group was 13.0
186 ± 5.2 mm Hg (mean \pm SD) and in the treatment group was 13.3 ± 7 mm Hg
187 (mean \pm SD) ($p>0.05$) (Figure 2B). There were 16 (33.3%) patients in the
188 control group who developed keratopathy, while only 5 (12.8%) in the
189 treatment group did ($p=0.0425$) (Figure 3). Within the control group there was
190 a trend toward longer duration of SO tamponade correlating with the
191 development of keratopathy as an independent variable: the mean duration
192 of SO tamponade was 118.2 weeks in eyes developing keratopathy versus
193 60.1 weeks in eyes without keratopathy ($p=0.09$); in the treatment group, the
194 mean duration of SO was 28.2 weeks in eyes with keratopathy and 32.2 weeks
195 in eyes without keratopathy ($p=0.96$). In the treatment group, the number of
196 appointments kept was 232, while the number of no-show visits was 30,
197 yielding a no-show rate of 11.5% (30/262). Finally, 100% of patients in the

198 treatment group were able to be examined or reached by phone at least once
199 during the post-operative period.

200

201 **Discussion**

202 To the best of our knowledge, this is the first study to evaluate the efficacy of a
203 registry system with phone call intervention to improve the rates of adherence
204 and treatment outcomes in patients with complicated RD undergoing PPV with
205 SO tamponade. In our study, patients with complex RD after surgeries in the
206 phone call reminder group were significantly more likely to adhere to the
207 recommended schedule and keep their eye examination appointments when
208 compared to patients without any tracking and intervention. This study found
209 that the number of patients lost to follow-up markedly dropped after
210 implementation of the registry and reminder system, from 23 (47.9%) to 6
211 (15.4%). Loss to follow up may represent a broader problem in the
212 management of vitreoretinal disease, as a recent study showed that the rate
213 exceeded 20% after anti-vascular endothelial growth factor injections.²⁰ The
214 results of the present study indicate that a phone call reminder call system can
215 be an effective means of improving patient compliance with follow-up
216 examinations and surgical treatment. These findings are supported by
217 previous studies demonstrating that a personal phone call appointment
218 reminder can improved adherence to follow-up appointments,^{13–15} despite the

219 fact that there are various reasons for patients not adhering to a schedule of
220 follow-up appointments.^{11,21-23}

221 In this series, reducing the loss to follow-up rate improved patient safety and
222 outcomes, largely by shortening the time that SO remained in the patients'
223 eyes. Indeed, duration of SO tamponade has been shown to be the greatest
224 risk factor for SO emulsification, which can lead to keratopathy, glaucoma, and
225 cataract.¹⁰ Keratopathy as one of the complications of SO tamponade declined
226 significantly after implementation of the registry and reminder system, in
227 conjunction with the reduced duration of SO in the eye in the treatment
228 group.¹⁰ IOP was not significantly different between the groups, possibly
229 because it was able to be controlled with eyedrops in both groups. Cataract
230 formation was not analyzed as an outcome measure in this study for two
231 reasons. First, unlike keratopathy or glaucoma, cataract formation does not
232 lead to a permanently poor outcome, since it can be addressed surgically at
233 any point; second, many patients had cataract removal in combination with
234 their retinal detachment repair or silicone oil removal procedures.

235 In this study we also determined the no-show rate in the treatment group.
236 This may be an important index in that it represents not only the care of the
237 patients in question but also the experience of the clinic population in general
238 due to the negative impacts that no-shows have on clinic efficiency. The
239 no-show rate of 11.5% achieved in the treatment group is similar to the goal of

240 10% that is often established as a target for efficiency and to avoid disruption
241 of clinic operations.²⁴ This reinforces the added value to clinic efficiency
242 brought about by the SO registry and reminder system and is consistent with
243 prior reports showing that reminders can improve ophthalmic follow-up
244 adherence.^{25,26}

245 There are several limitations to this study. One is that the study describes a
246 retrospective cohort without randomization. This was necessarily the case
247 since it tracks the change in practice in our department in the management of
248 patients with SO. As such, the number of patients is not matched between the
249 groups. In addition, the study is limited by its small sample size and the fact
250 that the assessment takes place at only one center. Also, ZSFG is a public,
251 safety net hospital whose patient composition may overrepresent persons with
252 socioeconomic challenges relative to the broader population, potentially
253 limiting the generalizability of our results. On the other hand, the dramatic
254 impact of the SO registry in improving outcomes in this particular patient
255 population may suggest that benefits could be achieved even in settings with
256 traditionally less difficulty in ensuring patient adherence to follow-up. Indeed,
257 studies suggest that significant problems with follow-up exist in other,
258 non-safety net populations with ophthalmic disease.²⁰

259 Another limitation is in the scope of patient parameters analyzed, as they
260 relate to follow-up compliance. It is possible that a more specific analysis of
261 patient characteristics, such as socioeconomic status, extent of family support,

262 housing status, race or ethnicity, and retinal detachment complexity could
263 identify additional factors affecting follow-up that could enable a more focused
264 application of staff resources to ensure compliance in a subset of SO patients.

265 In the absence of such a targeted approach, our data supports implementation
266 of a registry such as that in use at ZSFG.

267

268 **Conclusions**

269 In this study, we found that a patient registry and phone call follow-up
270 appointment reminder system for patients receiving SO tamponade
271 significantly improved attendance at follow-up appointments and reduced the
272 duration of SO in patients' eyes. Patient outcomes were improved, most
273 concretely by a reduction in the rate of keratopathy with the use of the registry.
274 Further studies are indicated to evaluate the generalizability of these results to
275 other patient populations.

276

277 **Figure Legends:**

278

279 Figure 1:

280 The loss to follow-up rates in the Control and Treatment groups. The number
281 of patients lost to follow-up was 23 (47.9%) in the control group versus 6
282 (15.4%) in the treatment group ($p=0.0015$).

283

284 Figure 2:

285 (A) Mean duration before SO removal between the Treatment and Control
286 groups, showing a significant difference ($p=0.015$). (B) Mean IOP in the two
287 groups, showing no significant difference ($p>0.05$). Error Bar: Standard Error.
288 SO: silicone oil; IOP: intraocular pressure.

289

290 Figure 3:

291 Keratopathy developed in 16 (33.3%) patients in the Control group, while only
292 5 (12.8%) in the Treatment group did ($p=0.0425$).

293

294

295 **References**

- 296 1. PA C, BECKER B, OKUN E, CANAAN S. The use of liquid silicone in retinal
297 detachment surgery. *Arch Ophthalmol* 1962;68:590–599.
- 298 2. Lesnoni G, Rossi T, Nistri A, Boccassini B. Long-term prognosis after
299 removal of silicone oil. *Eur J Ophthalmol* 2000;10:60–65.
- 300 3. Falkner CI, Binder S, Kruger A. Outcome after silicone oil removal. *Br J
301 Ophthalmol* 2001;85:1324–1327.
- 302 4. Abrams GW, Azen SP, McCuen BW 2nd, et al. Vitrectomy with silicone oil or
303 long-acting gas in eyes with severe proliferative vitreoretinopathy: results of
304 additional and long-term follow-up. *Silicone Study report 11. Arch Ophthalmol*
305 (Chicago, Ill 1960) 1997;115:335–344.
- 306 5. Ghosh YK, Banerjee S, Savant V, et al. Surgical treatment and outcome of
307 patients with giant retinal tears. *Eye (Lond)* 2004;18:996–1000.
- 308 6. Castellarin A, Grigorian R, Bhagat N, et al. Vitrectomy with silicone oil
309 infusion in severe diabetic retinopathy. *Br J Ophthalmol* 2003;87:318–321.

310 7. Szurman P, Roters S, Grisanti S, et al. Primary silicone oil tamponade in the
311 management of severe intraocular foreign body injuries: an 8-year follow-up.
312 *Retina* 2007;27:304–311.

313 8. Azen SP, Scott IU, Flynn HWJ, et al. Silicone oil in the repair of complex
314 retinal detachments. A prospective observational multicenter study.
315 *Ophthalmology* 1998;105:1587–1597.

316 9. Lou B, Yuan Z, He L, et al. The changes of retinal saturation after long-term
317 tamponade with silicone oil. *Biomed Res Int* 2015;Epub 2015 Oct 18.

318 10. Toklu Y, Cakmak HB, Ergun SB, et al. Time course of silicone oil
319 emulsification. *Retina* 2012;32:2039–2044.

320 11. Whiting PS, Greenberg SE, Thakore R V, et al. What factors influence
321 follow-up in orthopedic trauma surgery? *Arch Orthop Trauma Surg*
322 2015;135:321–327.

323 12. Neal RD, Hussain-Gambles M, Allgar VL, et al. Reasons for and
324 consequences of missed appointments in general practice in the UK:
325 questionnaire survey and prospective review of medical records. *BMC Fam*
326 *Pract* 2005;6:47.

327 13. Sawyer SM, Zalan A, Bond LM. Telephone reminders improve adolescent
328 clinic attendance: a randomized controlled trial. *J Paediatr Child Health*
329 2002;38:79–83.

330 14. Haynes JM, Sweeney EL. The effect of telephone appointment-reminder
331 calls on outpatient absenteeism in a pulmonary function laboratory. *Respir*
332 *Care* 2006;51:36–39.

333 15. Macharia WM, Leon G, Rowe BH, et al. An overview of interventions to
334 improve compliance with appointment keeping for medical services. *JAMA*
335 1992;267:1813–1817.

336 16. Glanz K, Beck AD, Bundy L, et al. Impact of a health communication
337 intervention to improve glaucoma treatment adherence. Results of the
338 interactive study to increase glaucoma adherence to treatment trial. *Arch*
339 *Ophthalmol (Chicago, Ill 1960)* 2012;130:1252–1258.

340 17. Kowing D, Messer D, Slagle S, Wasik A. Programs to optimize adherence
341 in glaucoma. *Optometry* 2010;81:339–350.

342 18. Zangalli CS, Murchison AP, Hale N, et al. An Education- and
343 Telephone-Based Intervention to Improve Follow-up to Vision Care in Patients
344 With Diabetes: A Prospective, Single-Blinded, Randomized Trial. *Am J Med*
345 *Qual* 2016;31:156–161.

346 19. Thompson AC, Thompson MO, Young DL, et al. Barriers to follow-up and
347 strategies to improve adherence to appointments for care of chronic eye
348 diseases. *Investig Ophthalmol Vis Sci* 2015;56:4324–4331.

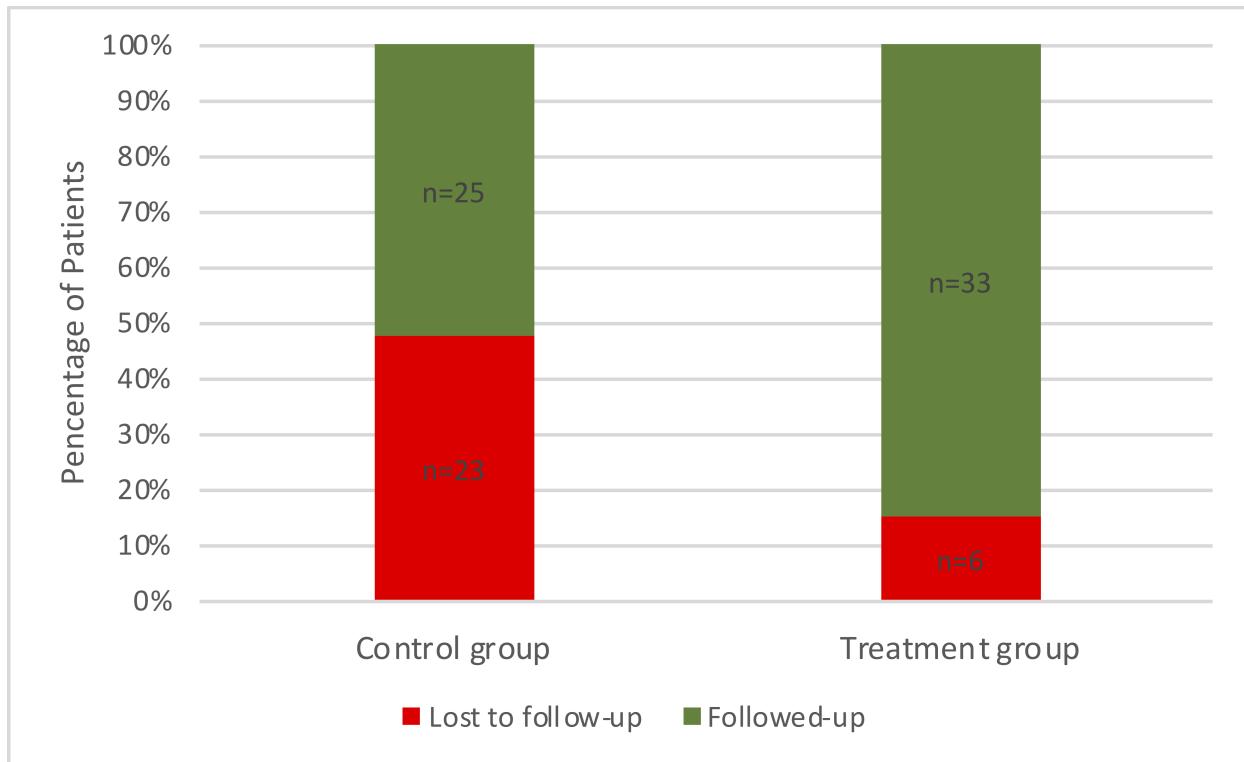
349 20. Obeid A, Gao X, Ali FS, et al. Loss to Follow-Up in Patients with
350 Proliferative Diabetic Retinopathy after Panretinal Photocoagulation or
351 Intravitreal Anti-VEGF Injections. *Ophthalmology* 2018;125:1386-92.

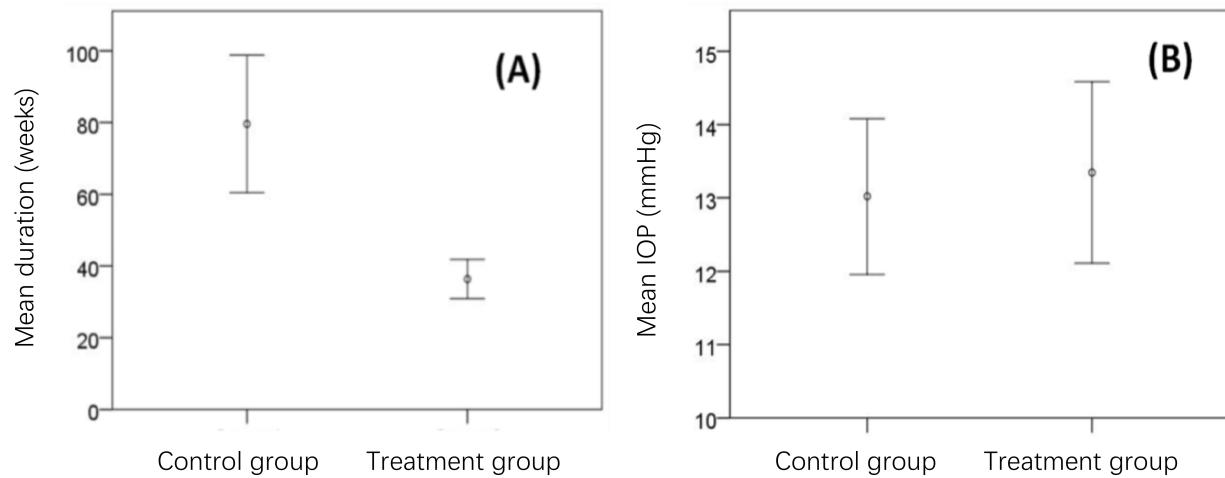
352 21. Li Y-J, Xirasagar S, Pumkam C, et al. Vision insurance, eye care visits, and
353 vision impairment among working-age adults in the United States. *JAMA*
354 *Ophthalmol* 2013;131:499–506.

355 22. Elam AR, Lee PP. High-risk populations for vision loss and eye care
356 underutilization: a review of the literature and ideas on moving forward. *Surv*
357 *Ophthalmol* 2013;58:348–358.

358 23. Wagner LD, Rein DB. Attributes associated with eye care use in the United
359 States: a meta-analysis. *Ophthalmology* 2013;120:1497–1501.

360 24. McMullen MJ, Netland PA. Lead time for appointment and the no-show
361 rate in an ophthalmology clinic. *Clin Ophthalmol* 2015;9:513–516.


362 25. Lin H, Chen W, Luo L, et al. Effectiveness of a short message reminder in
363 increasing compliance with pediatric cataract treatment: a randomized trial.
364 *Ophthalmology* 2012;119:2463–2470.


365 26. Brannan SO, Dewar C, Taggerty L, Clark S. The effect of short messaging
366 service text on non-attendance in a general ophthalmology clinic. *Scott Med J*
367 2011;56:148–150.

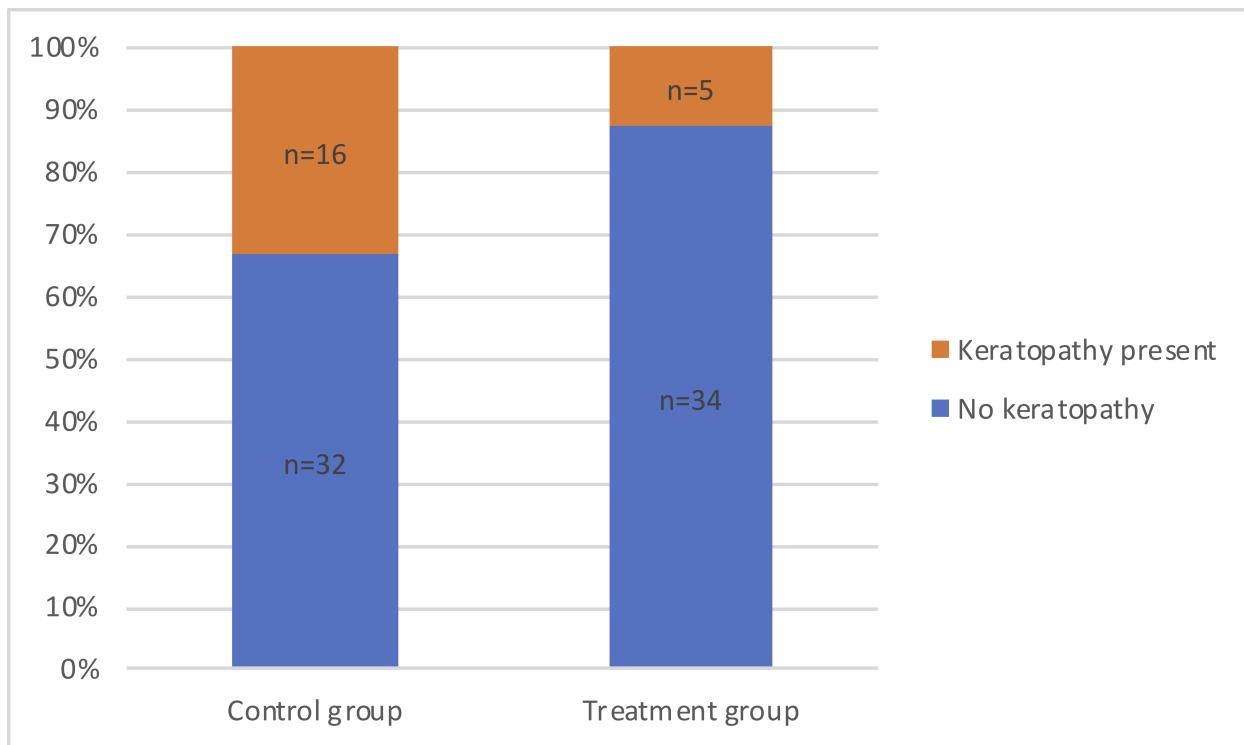

368

Table 1: Baseline patient characteristics

	Control group		Treatment group		p-value
Gender					0.55
Male (n)	36		27		
Female (n)	12		12		
	Median	[IQR]	Median	[IQR]	
Age (years)	54.4	[45.0-59.9]	55.0	[42.5-60.2]	0.73
Diagnosis					
PVR (n)	14		20		
PDR (n)	12		9		
GRT (n)	5		3		
Ocular trauma (n)	7		7		
Other (n)	9		0		
PVR, proliferative vitreoretinopathy; PDR, proliferative diabetic retinopathy; GRT, giant retinal tear; IQR, interquartile range					

Precis

Implementation of a silicone oil registry and phone call reminder system improved rates of adherence to follow-up appointments and treatment outcomes in patients with complicated retinal detachment who underwent vitrectomy with silicone oil tamponade.