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Abstract BACKGROUND CONTEXT: A traumatic spinal cord injury (SCI) can cause temporary or per-
manent motor and sensory impairment, leading to serious short and long-term consequences that
can result in significant morbidity and mortality. The cervical spine is the most commonly affected
area, accounting for about 60% of all traumatic SCI cases.

PURPOSE: This study aims to employ machine learning (ML) algorithms to predict various out-
comes, such as in-hospital mortality, nonhome discharges, extended length of stay (LOS), extended
length of intensive care unit stay (ICU-LOS), and major complications in patients diagnosed with
cervical SCI (cSCI).

STUDY DESIGN: Our study was a retrospective machine learning classification study aiming to
predict the outcomes of interest, which were binary categorical variables, in patients diagnosed
with cSCL

PATIENT SAMPLE: The data for this study were obtained from the American College of Sur-
geons (ACS) Trauma Quality Program (TQP) database, which was queried to identify patients who
suffered from cSCI between 2019 and 2021.

OUTCOME MEASURES: The outcomes of interest of our study were in-hospital mortality, non-
home discharges, prolonged LOS, prolonged ICU-LOS, and major complications. The study evalu-
ated the models’ performance using both graphical and numerical methods. The receiver operating
characteristic (ROC) and precision-recall curves (PRC) were used to assess model performance
graphically. Numerical evaluation metrics included AUROC, balanced accuracy, weighted area
under PRC (AUPRC), weighted precision, and weighted recall.

METHODS: The study employed data from the American College of Surgeons (ACS) Trauma
Quality Program (TQP) database to identify patients with ¢SCI. Four ML algorithms, namely
XGBoost, LightGBM, CatBoost, and Random Forest, were utilized to develop predictive models.
The most effective models were then incorporated into a publicly available web application
designed to forecast the outcomes of interest.

RESULTS: There were 71,661 patients included in the analysis for the outcome mortality, 67,331
for the outcome non-home discharges, 76,782 for the outcome prolonged LOS, 26,615 for the
outcome prolonged ICU-LOS, and 72,132 for the outcome major complications. The algorithms
exhibited an AUROC value range of 0.78 to 0.839 for in-hospital mortality, 0.806 to 0.815 for
nonhome discharges, 0.679 to 0.742 for prolonged LOS, 0.666 to 0.682 for prolonged ICU-LOS,
and 0.637 to 0.704 for major complications. An open access web application was developed as part
of the study, which can generate predictions for individual patients based on their characteristics.
CONCLUSIONS: Our study suggests that ML models can be valuable in assessing risk for
patients with cervical ¢SCI and may have considerable potential for predicting outcomes during
hospitalization. ML models demonstrated good predictive ability for in-hospital mortality and non-
home discharges, fair predictive ability for prolonged LOS, but poor predictive ability for pro-
longed ICU-LOS and major complications. Along with these promising results, the development of
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a user-friendly web application that facilitates the integration of these models into clinical practice
is a significant contribution of this study. The product of this study may have significant implica-
tions in clinical settings to personalize care, anticipate outcomes, facilitate shared decision making

and informed consent processes for cSCI patients.
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Introduction

An acute traumatic spinal cord injury (SCI) can result in
temporary or permanent motor and sensory impairment,
leading to devastating short and long-term consequences
that carry significant morbidity and mortality [1—3]. In
North America, the estimated annual incidence of SCI is 40
cases per million [4]. While chronic SCI affects nearly
300,000 people in the United States alone, the impact of
SCI on an individual’s longevity, functional ability, psycho-
logical well-being, and socioeconomic stability is substan-
tial [5—7]. Among all traumatic SCI cases, the cervical
spine is the most commonly affected area, accounting for
approximately 60% of cases [8,9]. Moreover, compared to
thoracic or lumbosacral injuries, cervical SCI (cSCI) is
associated with higher rates of adverse events and mortality
[10—12].

Due to the critical role of timely and effective diagnosis
and treatment in managing SCI, there is a promising opportu-
nity for machine learning (ML) approaches to improve the
quality of care and best practices [13]. Additionally, person-
alized or precision medicine can be beneficial in SCI patients
by accounting for the inherent variability in outcomes, func-
tional prognosis, and rehabilitation journey among this popu-
lation, thus allowing for tailored expectations and
management strategies. ML-based clinical predictive models
offer several advantages over conventional models that typi-
cally utilize logistic regression or other linear regression
techniques. One of the primary advantages is the ability to
handle nonlinear relationships between predictor variables
and outcomes. ML algorithms can capture complex patterns
and interactions that may be missed by conventional models
[14—16]. Additionally, ML algorithms can identify the most
important features for prediction, which can be helpful for
clinicians to identify which factors are most relevant for a
particular outcome [17,18]. These algorithms can also handle
missing data more effectively than conventional models,
which can improve model accuracy [19]. Furthermore, ML
algorithms have the potential to achieve higher accuracy
than conventional models, especially when the data is com-
plex, or the relationships between predictors and outcomes
are nonlinear [18,20]. Finally, ML algorithms are better able
to generalize to new data than conventional models, which
can improve the generalizability of the model [18,21]. Over-
all, these advantages can lead to better clinical decision-mak-
ing and patient outcomes.

Several studies have established the impressive predic-
tive capabilities of ML models for SCI outcomes [22—25].

Despite this, there is currently no prognostic tool available
that is specific to the traumatic cSCI patient population and
can be easily used in a clinical setting. This gap in the litera-
ture and clinical practice highlights the need for further
research to establish and validate ML models specifically
tailored to predict ¢SCI outcomes and can be integrated
into clinical practice. This study aims to develop a user-
friendly web application that integrates ML algorithms to
predict in-hospital outcomes for patients with cSCI. The
tool identifies high-risk patients and provides visual explan-
ations of the predictions to establish confidence and encour-
age adoption in clinical practice. It supports clinicians in
guiding treatment strategies, prioritizing care, and planning
for discharge needs. Additionally, the tool can facilitate
shared decision-making and support quality assurance ini-
tiatives. Comparing the tool’s predictions to clinical acu-
men could determine whether the analysis adds value to the
existing decision-making process. The application has sig-
nificant implications for clinical practice, improving patient
care and outcomes in the management of cSCI through the
integration of ML algorithms.

Methods

Data source

The data for this study were obtained from the American
College of Surgeons (ACS) Trauma Quality Program
(TQP) database, which was queried to identify patients who
suffered from cSCI between 2019 and 2021.

Guidelines

We followed the Transparent Reporting of Multivariable
Prediction Models for Individual Prognosis or Diagnosis
(TRIPOD) and Journal of Medical Internet Research
(JMIR) Guidelines for Developing and Reporting Machine
Learning Predictive Models in Biomedical Research
[26,27]. Our study was a retrospective machine learning
classification study aiming to predict the outcomes of inter-
est, which were binary categorical variables, in patients
diagnosed with cSCI.

Study population

Adult patients (aged 18 and over) with isolated cSCI
were identified by the International Classification of Dis-
eases, Tenth Revision (ICD-10) code S12X, S13X, and
S14X. We excluded patients with the following criteria: (1)
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patients with concurrent thoracolumbar SCI (S22X, S23X,
S24X, S32X, S33X, S34X); (2) patients with severe injuries
(Abbreviated Injury Scale [AIS] injury severity score>3) to
the head, face, thorax, abdomen, upper extremities, lower
extremities, and unspecified body regions; and (3) patients
with major polytrauma (Injury Severity Score [ISS] >27),
(4) patients with minor cSClIs (AIS injury severity score=1),
(5) patients with advanced directives limiting care, and (6)
patients with prehospital cardiac arrests.

With the second exclusion criteria, the intention was to
isolate cSCI to assess its impacts without the confounding
effects of other severe injuries in other body regions.
Regarding the exclusion of minor ¢SCIs (AIS injury sever-
ity score = 1), this choice was informed by the nature of the
injuries that fall into this category. AIS injury severity score
of one often encompasses injuries like spinal muscle strains.
The inclusion of such injuries would introduce a significant
level of heterogeneity to our patient group, which might
compromise the specificity of our findings. By focusing on
nonminor cSCIs, we aimed to provide a more homogenous
patient group and hence more reliable model predictions.

Predictor variables

The predictor variables that were deemed to be known
before the occurrence of the outcomes of interest were cho-
sen from the TQP dataset. A list of the variables utilized in
the analysis can be found in Supplementary Table 1.

Outcome of interest

The outcomes of interest of our study were in-hospital
mortality, nonhome discharges, prolonged LOS, prolonged
ICU-LOS, and major complications.

Nonhome discharges included discharges to various
healthcare facilities such as inpatient rehab or designated
units, home under the care of organized home health serv-
ices, skilled nursing facilities, long-term care hospitals,
short-term general hospitals for inpatient care, and interme-
diate care facilities. Patients with discharges to court/law
enforcement, psychiatric hospital or psychiatric unit of a
hospital, another type of institution not defined elsewhere,
and patients who left against medical advice or discontin-
ued care were excluded from the nonhome discharges anal-
ysis since these outcomes were not considered as a proxy
for functional status at discharge. Patients who died during
hospitalization or were discharged to hospice care were
also excluded from the analysis for nonhome discharges.

LOS and ICU-LOS were assessed by excluding patients
who died during hospitalization, left against medical
advice, or discontinued care since these patients may have
artificially lowered LOS. Prolonged LOS was defined as
total LOS greater than 80% of the included patient popula-
tion (>9 days), and prolonged ICU-LOS was defined as
total ICU-LOS greater than 80% of the included patient
population (>7 days).

Major complications included severe in-hospital compli-
cations such as cardiac arrest with resuscitation, central
line-associated bloodstream infection, catheter-related
bloodstream infection, deep surgical site infection, deep
vein thrombosis, pulmonary embolism, unplanned intuba-
tion, acute kidney injury, myocardial infarction, acute respi-
ratory distress syndrome, unplanned return to the operating
room, severe sepsis, stroke or cerebrovascular event,
unplanned admission to the ICU, and ventilator-associated
pneumonia.

Data preprocessing

Imputation was employed to avoid introducing bias by
excluding patients with missing values. After removing var-
iables with missing values for more than 25% of the patient
population, the k-nearest neighbor (kNN) imputation algo-
rithm was used to fill in the missing values in the remaining
continuous variables. To ensure that all feature values were
weighed equally, a Min-Max Scaler was used to place each
continuous variable in the (0, 1) range. After missing values
of categorical variables were imputed with “Unknown” or
“Unknown/Other,” all were label-encoded.

Training, validation, and test sets

The data from 2019 to 2021 was split into training, vali-
dation, and test sets in a 60:20:20 ratio. The training set was
used to train the models, the validation set to fine-tune the
hyperparameters and calibrate the models, and the test set
to evaluate the models’ performance.

To account for the class imbalance for the positive out-
comes of interest the Synthetic Minority Over-sampling
Technique (SMOTE) was used to artificially generate cases
of positive outcomes of interest based on the training sets
[28].

Modeling

This study employed four machine learning algorithms,
namely XGBoost, LightGBM, CatBoost, and Random For-
est, to build the prediction models for each outcome. The
optimization of these algorithms was performed using the
Optuna library, with the objective of maximizing the area
under the receiver operating characteristic curve (AUROC)
metric [29]. To establish a benchmark for optimization, the
TPESampler algorithm was used. The final models were
developed using the training sets and the optimized hyper-
parameters. Platt scaling, also known as isotonic regression,
was used to calibrate the models [30,31]. All machine learn-
ing analyses were conducted using Python version 3.7.15.

Performance evaluation

The study evaluated the models’ performance using both
graphical and numerical methods. The receiver operating
characteristic (ROC) and precision-recall curves (PRC)
were used to assess model performance graphically.
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Supplemental Oxygen

Mechanism of Injury

Fig. 1. A screenshot of the online web application.

Numerical evaluation metrics included AUROC, balanced
accuracy, weighted area under PRC (AUPRC), weighted
precision, and weighted recall. Calibration was assessed
using the Brier score. We also employed SHapley Additive
exPlanations (SHAP) framework to determine the relative
importance of predictor variables [32].

Online prediction tool

An online prediction tool was developed to generate patient-
level predictions (Fig. 1). This tool is built upon the models dis-
cussed in the present study. Both the tool and its source code
are publicly available through Hugging Face, a platform that
facilitates sharing of machine learning models. The following
link will take readers to the online prediction tool: https://hug
gingface.co/spaces/MSHS-Neurosurgery-Research/TQP-cSCI.

Statistical analysis

For continuous variables with a normal distribution,
means (£ standard deviations) were reported, whereas
medians (interquartile ranges) were presented for non-nor-
mally distributed continuous variables. For categorical vari-
ables, the number of patients was reported with
percentages. Statistical differences between groups were
determined using various statistical tests. Specifically, the
independent t-test was applied for normally distributed con-
tinuous variables with equal variances, Welch’s t-test was
used for normally distributed continuous variables with
unequal variances, Mann-Whitney U test was used for non-

normally distributed continuous variables, and Pearson’s
chi-squared test was used for categorical variables. The nor-
mality of the continuous variables was assessed using the
Shapiro-Wilk test, and the equality of variances was evalu-
ated using Levene’s test. Statistical significance was con-
sidered when p<.05. All statistical analyses were
performed using Python version 3.7.15.

Results

Initially, 391,960 patients were identified with the ICD-
10 codes S12X, S13X, and S14X. After excluding 166,058
patients with concurrent thoracolumbar SCI, other exclu-
sion criteria were applied sequentially (Fig. 2). There were
71,661 patients included in the analysis for the outcome
mortality (n=2,280 [3.18%] mortality), 67,331 for the out-
come non-home discharges (n=31,300 [46.49%] nonhome
discharges), 76,782 for the outcome prolonged LOS
(n=13,404 [17.46%] prolonged LOS), 26,615 for the out-
come prolonged ICU-LOS (n=4,445 [16.7%] prolonged
ICU-LOS), and 72,132 for the outcome major complica-
tions (n=3,891 [5.39%] major complications). Characteris-
tics of the patient population are presented in Table 1.
Differences among the patients belonging to different out-
come groups are presented in Supplementary Tables 2, 3, 4,
5, and 6.

The most accurately predicted outcome in terms of
AUROC was the in-hospital mortality, with a mean
AUROC of 0.816 (95% confidence interval [CI] 0.790
—0.826). Among the four different algorithms, the Random
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391,960 patients identified with ICD-10
codes S12X, S13X, and S14X

Concurrent thoracolumbar spinal cord

166,058 patients with isolated cervical
spinal cord injuries

injuries (n=225,902)

Excluded Patients
a. Pediatric patients (n = 18,261)
b. AIS head 2 3 (n = 25,371)
c. AIS face 2 3 (n = 470)
d. AIS thorax 2 3 (n = 11,547)
e. AlS abdomen =3 (n=910)

79,769 patients after exclusion criteria
were applied

f. AIS upper extremity 2 3 (n = 574)
g. AIS lower extremity =2 3 (n = 3,432)
h. AIS unspecified 2 3 (n = 13)
i.1SS 227 (n=1,241)

j. AIS spine < 2 (n = 18,257)

k. ADLC (n = 4,752)
|. Pre-hospital cardiac arrest (n = 1,461)

Mortality (n = 71,661)
a. Patients with unknown
discharge disposition
(n=8,108)

Non-home Discharges
(n = 67,331)

a. Patients with unknown
discharge disposition
(n=8,108)

b. Patients with non-
functional discharges
(n = 4,330)

Prolonged LOS
(n=76,782)
a. Patients with unknown
LOS (n = 459)

b. Patients who died in
hospital, left against
medical advice, or
discontinued care
(n=2,528)

Prolonged ICU-LOS
(n=26,615)

a. Patients with unknown
ICU-LOS (n = 51,400)
b. Patients who died in

hospital, left against
medical advice, or
discontinued care
(n=1,754)

Major Complications
(n=72,132)
a. Patients with unknown
complication statuses
(n=7,637)

Fig. 2. Patient selection flowchart.

Forest algorithm demonstrated the best discriminative abil-
ity across all outcomes, with a mean AUROC of 0.752
(95% CI 0.731—-0.760). The performance metrics for the
algorithms are provided in Table 2.

The ROC and PRC for each of the five outcomes are
illustrated in Figs. 3 and 4, respectively. Meanwhile, Fig. 5
presents the SHAP bar plots for the top-performing algo-
rithm for each outcome. Supplementary Figures 1 to 5 con-
tain the SHAP bar plots for the remaining algorithms for
every outcome. SHAP bar plots offer an overview of the
significance of features in a model. Within these plots, the
value of each feature is signified by a bar, its length relating
to the average absolute SHAP value from all occurrences.
This importance gauge signifies the average strength of a
feature’s input to the model’s prediction. The features are
arranged according to their significance, with the most
influential feature at the top. For instance, Fig. 5D shows
the SHAP bar plot for the XGBoost model’s prediction of
prolonged ICU-LOS, where “Systolic Blood Pressure” pos-
sesses the longest bar. This signifies that systolic blood
pressure is the most critical predictor of prolonged ICU-
LOS in the model, meaning that systolic blood pressure has
globally the greatest impact on the model’s prediction of
prolonged ICU-LOS compared to the other features.

Discussion

The purpose of this study was to explore the potential
of ML models in enhancing the prediction of adverse
in-hospital outcomes following cSCI by utilizing an
expanded set of clinical variables. Our ML models were
developed to forecast in-hospital mortality, nonhome
discharges, prolonged LOS, prolonged ICU-LOS, and
major complications. The findings of the study suggest
that ML algorithms can facilitate the risk stratification
of cSCI patients and offer valuable insights into predict-
ing adverse in-hospital outcomes. The results regarding
the discriminatory performances of our models indicate
good classification performance for predicting in-hospi-
tal mortality and nonhome discharges, fair performance
for predicting prolonged LOS, and poor performance for
predicting prolonged ICU-LOS and major complications
[33]. Additionally, we developed an open-access web
application that provides probabilistic predictions for the
outcomes investigated in this study for cSCI patients.
The application incorporates SHAP plots to offer visual
explanations of the predictions, aiming to establish con-
fidence in the predictions and encourage their adoption
in clinical practice. To the best of our knowledge, this
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Table 1 Table 1 (Continued)
Patient characteristics.
Variables Total
Variables Total Mean (£SD),
Mean (£SD), Median (IQR),
Median (IQR), or n (%)
or n (%) Subluxation and Dislo- ~ No 79579 (99.8%)
Age 62.0 (£33.0) cation of C3/C4 Yes 190 (0.2%)
Sex Male 50263 (63.0%) Vertebrae
Female 29199 (36.6%) Subluxation and Dislo- No 79512 (99.7%)
Non-binary 8 (0.0%) cation of C4/C5 Yes 257 (0.3%)
Unknown 299 (0.4%) Vertebrae
Race White 59494 (74.6%) Subluxation and Dislo- No 79457 (99.6%)
Black 12218 (15.3%) cation of C5/C6 Yes 312 (0.4%)
Asian 1536 (1.9%) Vertebrae
Other/unknown 6521 (8.2%) Subluxation and Dislo- No 79549 (99.7%)
Ethnicity Not Hispanic or 70480 (88.4%) cation of C6/C7 Yes 220 (0.3%)
Latino Vertebrae
Hispanic or Latino 6409 (8.0%) Subluxation and Dislo- No 79733 (100.0%)
Unknown 2880 (3.6%) cation of C7/T1 Yes 36 (0.0%)
Weight 79.4 (£25.0) Vertebrae
Height 172.7 (£15.0) Concussion and Edema No 78654 (98.6%)
Systolic Blood Pressure 142.0 (£34.0) of cSC Yes 1115 (1.4%)
Pulse Rate 82.0 (£22.0) Complete Lesion of ¢SC No 75477 (94.6%)
Supplemental Oxygen No supplemental 66663 (83.6%) Yes 4292 (5.4%)
oxygen Anterior Cord Syndrome ~ No 79677 (99.9%)
Supplemental oxygen 7854 (9.8%) of ¢cSC Yes 92 (0.1%)
Unknown 5252 (6.6%) Brown-Sequard Syn- No 79510 (99.7%)
Pulse Oximetry 98.0 (£3.0) drome of cSC Yes 259 (0.3%)
Respiratory Assistance Unassisted respira- 74428 (93.3%) Other Incomplete No 78474 (98.4%)
tory rate Lesions of ¢cSC Yes 1295 (1.6%)
Assisted respiratory 1593 (2.0%) Current Smoker No 62076 (77.8%)
rate Yes 17667 (22.2%)
Unknown 3748 (4.7%) Unknown 26 (0.0%)
Respiratory Rate 18.0 (£4.0) Alcohol Use Disorder No 73286 (91.9%)
Temperature 36.7 (£0.5) Yes 6435 (8.1%)
GCS - Eye 4.0 (£0.0) Unknown 48 (0.1%)
GCS - Verbal 5.0 (£0.0) Substance Abuse No 74620 (93.6%)
GCS - Motor 6.0 (£0.0) Disorder Yes 5100 (6.4%)
Total GCS 15.0 (£0.0) Unknown 49 (0.1%)
Fracture of C1 Vertebra ~ No 76584 (96.0%) Diabetes Mellitus No 65628 (82.3%)
Yes 3185 (4.0%) Yes 14118 (17.7%)
Fracture of C2 Vertebra No 70710 (88.6%) Unknown 23 (0.0%)
Yes 9059 (11.4%) Hypertension No 44189 (55.4%)
Fracture of C3 Vertebra No 78541 (98.5%) Yes 35546 (44.6%)
Yes 1228 (1.5%) Unknown 34 (0.0%)
Fracture of C4 Vertebra No 78209 (98.0%) Congestive Heart No 75761 (95.0%)
Yes 1560 (2.0%) Failure Yes 3998 (5.0%)
Fracture of C5 Vertebra No 77472 (97.1%) Unknown 10 (0.0%)
Yes 2297 (2.9%) History of Myocardial No 78986 (99.0%)
Fracture of C6 Vertebra No 76286 (95.6%) Infarction Yes 640 (0.8%)
Yes 3483 (4.4%) Unknown 143 (0.2%)
Fracture of C7 Vertebra ~ No 75685 (94.9%) Angina Pectoris No 79568 (99.8%)
Yes 4084 (5.1%) Yes 193 (0.2%)
Rupture of Cervical No 79549 (99.7%) Unknown 8 (0.0%)
Intervertebral Disc Yes 220 (0.3%) History of Cerebrovas- No 77521 (97.2%)
Subluxation and Dislo- No 79677 (99.9%) cular Accident Yes 2222 (2.8%)
cation of CO/C1 Yes 92 (0.1%) Unknown 26 (0.0%)
Vertebrae Peripheral Arterial No 78877 (98.9%)
Subluxation and Dislo- No 79397 (99.5%) Disease Yes 860 (1.1%)
cation of C1/C2 Yes 372 (0.5%) Unknown 32 (0.0%)
Vertebrae Chronic Obstructive No 73689 (92.4%)
Subluxation and Dislo- No 79660 (99.9%) Pulmonary Disease Yes 6069 (7.6%)
cation of C2/C3 Yes 109 (0.1%) Unknown 11 (0.0%)

Vertebrae
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Table 1 (Continued)

Variables

Total

Mean (+SD),
Median (IQR),
or n (%)

Variables

Total

Mean (+SD),
Median (IQR),
or n (%)

Chronic Renal Failure

Cirrhosis

Bleeding Disorder

Disseminated Cancer

Currently Receiving
Chemotherapy for
Cancer

Dementia

Attention Deficit Disor-
der or Attention Defi-
cit Hyperactivity
Disorder

Mental or Personality
Disorder

Ability to Complete
Age-Appropriate ADL

Pregnancy

Anticoagulant Therapy

Steroid Use

No

Yes
Unknown
No

Yes
Unknown
No

Yes
Unknown
No

Yes
Unknown
No

Yes
Unknown
No

Yes
Unknown
No

Yes
Unknown

Unknown

Not applicable (male
patient)

No

Yes

Unknown

Unknown

Days from Incident to ED or Hospital Arrival

Transport Mode

Inter-Facility Transfer

Trauma Type

Injury Intent

Mechanism of Injury

Ground ambulance

Private/public vehi-
cle/walk-in

Air ambulance

Other/unknown

No

Yes

Unknown

Blunt

Penetrating

Other/unknown

Unintentional

Assault

Other/unknown

Fall

MVT occupant

Struck by or against

Other MVT

MVT motorcyclist

Other transport

78208 (98.0%)
1541 (1.9%)
20 (0.0%)
78874 (98.9%)
871 (1.1%)
24 (0.0%)
79016 (99.1%)
746 (0.9%)
7 (0.0%)
79247 (99.4%)
514 (0.6%)
8 (0.0%)
79330 (99.4%)
429 (0.5%)
10 (0.0%)
75436 (94.6%)
4327 (5.4%)
6 (0.0%)
78903 (98.9%)
861 (1.1%)
5(0.0%)

70540 (88.4%)
9163 (11.5%)
66 (0.1%)
71467 (89.6%)
8288 (10.4%)
14 (0.0%)
50263 (63.0%)

29398 (36.8%)
74 (0.1%)
34 (0.0%)
69992 (87.7%)
9766 (12.2%)
11 (0.0%)
78825 (98.8%)
938 (1.2%)
6 (0.0%)
1.0 (£0.0)
65057 (81.6%)
7628 (9.6%)

6399 (8.0%)
685 (0.9%)
49348 (61.9%)
30411 (38.1%)
10 (0.0%)
77651 (97.3%)
1422 (1.8%)
696 (0.9%)
76594 (96.0%)
2436 (3.0%)
739 (0.9%)
43530 (54.6%)
20907 (26.2%)
2863 (3.6%)
2548 (3.2%)
2094 (2.6%)
1919 (2.4%)

Protective Device

Work-Related

Blood Transfusion
Surgical Intervention

Alcohol Screen

Alcohol Screen Result
Drug Screen -
Amphetamine

Drug Screen -
Barbiturate

Drug Screen -
Benzodiazepines

Drug Screen -
Cannabinoid

Drug Screen - Cocaine
Drug Screen - MDMA
or Ecstasy

Drug Screen -
Methadone

Drug Screen -
Methamphetamine

Drug Screen - Opioid
Drug Screen -
Oxycodone

Drug Screen -
Phencyclidine

Drug Screen - Tricyclic
Antidepressant

ACS Verification Level

Other pedal cyclist
MVT pedestrian
Firearm
Other/unknown
None

Belt

Airbag present
Helmet
Other/unknown
No/unknown
Yes

None

Fusion
Decompression
Other

Yes

No

Unknown

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

No

Yes

Not tested

Level I Trauma
Center

Level II Trauma
Center

1494 (1.9%)
962 (1.2%)
1068 (1.3%)
2384 (3.0%)
56196 (70.4%)
13939 (17.5%)
4759 (6.0%)
2761 (3.5%)
2114 (2.6%)
77762 (97.5%)
2007 (2.5%)
0.0 (£0.0)
77843 (97.6%)
1253 (1.6%)
563 (0.7%)
110 (0.1%)
41339 (51.8%)
38277 (48.0%)
153 (0.2%)
0.0 (£0.0)
26407 (33.1%)
2488 (3.1%)
50874 (63.8%)
28612 (35.9%)
283 (0.4%)
50874 (63.8%)
27451 (34.4%)
1444 (1.8%)
50874 (63.8%)
22285 (27.9%)
6610 (8.3%)
50874 (63.8%)
26636 (33.4%)
2259 (2.8%)
50874 (63.8%)
28744 (36.0%)
151 (0.2%)
50874 (63.8%)
28750 (36.0%)
145 (0.2%)
50874 (63.8%)
28120 (35.2%)
775 (1.0%)
50874 (63.8%)
26882 (33.7%)
2013 (2.5%)
50874 (63.8%)
28465 (35.7%)
430 (0.5%)
50874 (63.8%)
28701 (36.0%)
194 (0.2%)
50874 (63.8%)
28783 (36.1%)
112 (0.1%)
50874 (63.8%)
35220 (44.2%)

19979 (25.0%)
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Table 1 (Continued)

Variables Total
Mean (£SD),
Median (IQR),
or n (%)
Level III Trauma 3900 (4.9%)
Center
Unknown 20670 (25.9%)
Hospital Type Non-profit 69392 (87.0%)
For profit 9896 (12.4%)
Government 449 (0.6%)
Unknown 32 (0.0%)
Facility Bed Size More than 600 28994 (36.4%)
401 to 600 22663 (28.4%)
201 to 400 22735 (28.5%)
200 or fewer 5377 (6.7%)
Primary Method of Medicare 31343 (39.3%)
Payment Private/commercial 26534 (33.3%)
insurance
Medicaid 9621 (12.1%)
Self-pay 6571 (8.2%)
Other/unknown 5700 (7.2%)

SD, standard deviation; IQR, interquartile range; GCS, Glasgow Coma
Scale; ¢SC, cervical spinal cord, ADL, activities of daily living; ED, emer-
gency department; ACS, American College of Surgeons

is the first web application of its kind to provide predic-
tions with additional interpretability for cSCI outcomes
using ML.

Our study introduces ML models, coupled with a web
application, that could offer personalized and quantitative
risk assessments for specific undesired outcomes following
¢SCI. This advancement stands to significantly enhance tra-
ditional methods that rely on generic risks based on popula-
tion averages or subjective assessments by physicians.
While we acknowledge that our study does not directly
demonstrate the impact of these models on shared decision-
making or the informed consent process, we posit that the
potential clinical applications of our models are deserving
of further investigation. The integration of these models
into clinical practice could support clinical decision-making
throughout a patient’s hospital stay by forecasting the risk
of functional impairment, thus assisting in prioritizing care
and planning for discharge needs. This information can
guide informed consent processes and shared decision-mak-
ing, giving patients and caregivers insights into potential
needs for nursing assistance postdischarge, enabling appro-
priate arrangements. Additionally, the implementation of
our ML models and web application may contribute to qual-
ity assurance initiatives. They can serve as tools to identify
unexpected patterns of undesired outcomes, particularly in
patients predicted to be at low risk. This discrepancy
between predicted and actual outcomes may reflect gaps in
processes, hospital policies, or specific care gaps that vary
across different populations. The findings from this compar-
ison can then drive policy changes or resource optimization
strategies to improve patient outcomes. For instance, if we
observe undesired outcomes in low-risk patients, this might

indicate a systemic process gap or a population-specific
resource barrier that needs to be addressed. In summary,
our approach could potentially improve patient care and
bolster clinical decision-making, leading to improved out-
comes for individuals with cSCI. We envisage the web
application being used by clinicians to validate their clinical
decisions based on the predictions generated by the ML
models. By providing additional quantitative risk assess-
ments, the tool may aid clinicians in making more informed
decisions that consider a patient’s specific circumstances
and medical history. Such an approach could enhance the
integration and workflow of multimodal and multidisciplin-
ary care for cSCI patients. Nonetheless, future studies are
needed to ascertain if the analysis outperforms or supple-
ments clinical acumen, as well as to explore its integration
into daily care and management.

We acknowledge that the study’s main limitations are the
clinical accuracy and relevance of the predictions, given the
many confounders associated with the outcomes of interest
that have not been accounted for due to the limited granular-
ity within this database. While the study is mainly academic
at this point, we believe that the potential clinical applica-
tions of the tool warrant further investigation. Customization
of ML models for specific hospitals is possible by training
them with data from that particular hospital, and updates can
be made as new data becomes available to enhance their pre-
dictive capabilities. In response to concerns raised regarding
the clinical relevance and accuracy of our models in real-
world scenarios, future research should focus on addressing
these limitations by incorporating more granular and com-
prehensive data sources that account for these confounders.
By doing so, the predictive capabilities of the ML models
could be significantly improved, further enhancing their
potential clinical applications and utility.

When dealing with imbalanced datasets in ML classifica-
tion tasks, it is crucial to exercise caution and understand the
metrics used to evaluate model performance. Class distribu-
tion refers to the proportion of instances in each category in
a classification problem. In our context, the “majority class”
signifies the category with more instances, while the
“minority class” denotes the category with fewer instances.
For instance, in predicting in-hospital mortality following
¢SCI, the majority of patients would likely fall into the
“patients without in-hospital mortality” category, making it
the majority class. In contrast, the “patients with in-hospital
mortality” category, having fewer instances, would constitute
the minority class. In our study, we used metrics such as bal-
anced accuracy, weighted precision, weighted recall, and
weighted AUPRC to assess the performance of our ML mod-
els for predicting outcomes after cSCI. These metrics take
into account the class distribution of the data, giving more
weight to the minority class [34—36]. This allows for the fair
evaluation of a model’s performance in both classes and a
more comprehensive view of the model’s performance, con-
sidering the class distribution in the data. In contrast,
unweighted versions of these metrics may not be reliable in



Table 2

Model performances

Outcome Algorithm Weighted precision Weighted recall Weighted AUPRC Balanced accuracy AUROC Brier score
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
Mortality XGBoost 0.958 (0.955—-0.961) 0.789 (0.782—0.796) 0.141 (0.135—0.147) 0.713 (0.706—0.72) 0.821 (0.791-0.827) 0.028 (0.025—0.031)
LightGBM 0.958 (0.955—0.961) 0.788 (0.781—0.795) 0.142 (0.136—0.148) 0.715 (0.708—0.722) 0.822 (0.793—0.831) 0.028 (0.025—0.031)
CatBoost 0.949 (0.945—-0.953) 0.949 (0.945—0.953) 0.055 (0.051-0.059) 0.573 (0.565—0.581) 0.78 (0.758—0.798) 0.029 (0.026—0.032)

Nonhome discharges

Prolonged LOS

Prolonged ICU-LOS

Major complications

Random Forest
Mean
XGBoost
LightGBM
CatBoost
Random forest
Mean
XGBoost
LightGBM
CatBoost
Random forest
Mean
XGBoost
LightGBM
CatBoost
Random forest
Mean
XGBoost
LightGBM
CatBoost
Random forest
Mean

0.951 (0.947—0.955)
0.954 (0.95—0.958)
0.735 (0.728—0.742)
0.737 (0.73—0.744)
0.739 (0.732—0.746)
0.733 (0.726—0.74)
0.736 (0.729—0.743)
0.796 (0.79—0.802)
0.775 (0.768—0.782)
0.788 (0.782—0.794)
0.786 (0.78—0.792)
0.786 (0.78—0.792)
0.784 (0.773—0.795)
0.779 (0.768—0.79)
0.775 (0.764—0.786)
0.779 (0.768—0.79)
0.779 (0.768—0.79)
0.909 (0.904—0.914)
0.911 (0.906—0.916)
0.904 (0.899—0.909)
0.904 (0.899—0.909)
0.907 (0.902—0.912)

0.961 (0.958—0.964)
0.872 (0.866—0.877)
0.733 (0.726—0.74)
0.735 (0.728—0.742)
0.737 (0.73—0.744)
0.73 (0.723—0.737)
0.734 (0.727—0.741)
0.83 (0.824—0.836)
0.698 (0.691—0.705)
0.772 (0.765—0.779)
0.816 (0.81—0.822)
0.779 (0.772—0.786)
0.776 (0.765—0.787)
0.699 (0.687—0.711)
0.765 (0.754—0.776)
0.727 (0.715—0.739)
0.742 (0.73—0.753)
0.943 (0.939—0.947)
0.726 (0.719—0.733)
0.896 (0.891—0.901)
0.936 (0.932—0.94)
0.875 (0.87—0.88)

0.145 (0.139—0.151)
0.121 (0.115-0.126)
0.757 (0.75—0.764)
0.759 (0.752—0.766)
0.641 (0.633—0.649)
0.745 (0.738—0.752)
0.726 (0.718—0.733)
0.407 (0.399—0.415)
0.308 (0.301—0.315)
0.259 (0.252—0.266)
0.372 (0.364—0.38)
0.336 (0.329—0.344)
0.327 (0.314—0.34)
0.327 (0.314—0.34)
0.219 (0.208—0.23)
0.325 (0.312—0.338)
0.3 (0.287-0.312)
0.121 (0.116—0.126)
0.098 (0.093—0.103)
0.06 (0.056—0.064)
0.102 (0.097—0.107)
0.095 (0.09—0.1)

0.564 (0.556—0.572)
0.641 (0.634—0.649)
0.734 (0.727—0.741)
0.735 (0.728—0.742)
0.737 (0.73—0.744)
0.732 (0.725—0.739)
0.734 (0.728—0.742)
0.586 (0.578—0.594)
0.624 (0.616—0.632)
0.64 (0.632—0.648)
0.596 (0.588—0.604)
0.612 (0.604—0.62)
0.615 (0.602—0.628)
0.617 (0.604—0.63)
0.599 (0.586—0.612)
0.616 (0.603—0.629)
0.612 (0.599—0.625)
0.51 (0.502—0.518)
0.586 (0.578—0.594)
0.531 (0.523—0.539)
0.514 (0.506—0.522)
0.535 (0.527—0.543)

0.839 (0.816—0.848)
0.816 (0.79—0.826)
0.807 (0.799—0.813)
0.806 (0.801—0.815)
0.815 (0.803—0.818)
0.811 (0.796—0.81)
0.81 (0.8—0.814)

0.736 (0.737—0.757)
0.679 (0.668—0.69)
0.718 (0.712—0.732)
0.742 (0.721—0.742)
0.719 (0.71-0.73)
0.674 (0.66—0.701)
0.666 (0.651—0.69)
0.682 (0.657—0.696)
0.675 (0.651—0.692)
0.674 (0.655—0.695)
0.704 (0.683—0.72)
0.637 (0.618—0.658)
0.645 (0.619—0.658)
0.691 (0.672—0.707)
0.669 (0.648—0.686)

0.028 (0.025—0.031)
0.028 (0.025—-0.031)
0.18 (0.174—0.186)
0.179 (0.173—0.185)
0.177 (0.171-0.183)
0.18 (0.174—0.186)
0.179 (0.173—-0.185)
0.126 (0.121-0.131)
0.175 (0.169—0.181)
0.129 (0.124—0.134)
0.128 (0.123—-0.133)
0.14 (0.134-0.145)
0.129 (0.12—0.138)
0.132(0.123—-0.141)
0.13(0.121-0.139)
0.13 (0.121-0.139)
0.13(0.121-0.139)
0.05 (0.046—0.054)
0.103 (0.098—0.108)
0.051 (0.047—0.055)
0.05 (0.046—0.054)
0.064 (0.059—0.068)

AUPRGC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; CI, confidence interval.
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Fig. 3. (A). Algorithms’ receiver operator curves for the outcome in-hospital mortality. (B). Algorithms’ receiver operator curves for the outcome nonhome
discharges. (C). Algorithms’ receiver operator curves for the outcome prolonged length of stay. (D). Algorithms’ receiver operator curves for the outcome
prolonged length of intensive care unit stay. (E). Algorithms’ receiver operator curves for the outcome major complications.

scenarios with imbalanced datasets since they do not con-
sider the class distribution and may give a false sense of
good performance by ignoring the minority class. Moreover,
interpreting AUPRC can be challenging since its baseline is
equal to the fraction of positive examples in the dataset,
which can lead to significantly lower values than the
AUROC, particularly for datasets with a low fraction of posi-
tive examples [37]. However, AUPRC may be more mean-
ingful for a specific classification task. Despite this, it is
often reported less frequently than AUROC due to its lower
absolute values. In our study, the mean weighted AUPRC
for predicting in-hospital mortality was 0.121, while the in-
hospital mortality ratio was 0.032, representing the baseline.
Finally, to assess the models’ calibration, we used the Brier
score, which measures the average squared difference
between predicted and actual probabilities [31,38]. A well-
calibrated model will have a Brier score close to zero, indi-
cating that the predicted probabilities are very close to the
actual probabilities.

We did not find any studies that presented ML models
for predicting all adverse in-hospital outcomes we investi-
gated after ¢cSCI. However, some studies employed ML
techniques to predict various outcomes following SCI. For

example, Inoue et al. [25] evaluated the efficacy of ML
algorithms in predicting neurological outcomes in patients
with cSCI. The authors analyzed data from 165 patients
with ¢SCI and used commonly utilized predictors such as
demographics, magnetic resonance variables, and treatment
strategies. The predictive tools used were XGBoost, logistic
regression, and decision tree. The results showed that
XGBoost had the highest accuracy (81.1%) and the second
highest AUROC (0.867), followed by logistic regression
and decision tree. Similarly, Fallah et al. [24] aimed to
develop and validate a prognostic tool that could predict
mortality following traumatic SCI. They developed the Spi-
nal Cord Injury Risk Score (SCIRS) using ML techniques
on patient-level data from 849 participants. The validation
cohort consisted of 396 participants. The performance of
SCIRS was compared with the ISS, a measure used to pre-
dict mortality following general trauma. The SCIRS was
found to be more accurate than ISS in predicting both in-
hospital and 1-year mortality following traumatic SCI. The
AUROC for the SCIRS was 0.84 and 0.86 for 1-year mor-
tality prediction in the development and validation cohorts,
respectively. For in-hospital mortality, AUROC values
were 0.87 and 0.85 for the development and validation
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Fig. 4. (A). Algorithms’ precision-recall curves for the outcome in-hospital mortality. (B). Algorithms’ precision-recall curves for the outcome nonhome dis-
charges. (C). Algorithms’ precision-recall curves for the outcome prolonged length of stay. (D). Algorithms’ precision-recall curves for the outcome pro-
longed length of intensive care unit stay. (E). Algorithms’ precision-recall curves for the outcome major complications.

cohorts, respectively. Furthermore, Fan et al. aimed to
develop ML classifiers to predict prolonged ICU-LOS and
prolonged LOS in critical patients with SCI [23]. A total of
1,599 critical patients were included in the study, and data
were extracted from two databases. The authors developed
91 initial ML classifiers, and the top three initial classifiers
with the best performance were stacked into an ensemble
classifier with a logistic regressor. The ensemble classifiers
successfully predicted prolonged ICU-LOS and prolonged
LOS, with AUROCSs of 0.864 and 0.815, in the three-time
five-fold cross-validation and 0.802 and 0.799, respectively,
in independent testing.

Although the reported performance metrics were compa-
rable with our study, these studies have some serious draw-
backs. First, compared to our study, these models were
developed using very small sample sizes. Developing ML-
based clinical predictive models using small sample sizes
can have several disadvantages. Firstly, small sample sizes
can result in overfitting, where the model is optimized to
perform well on the training data but does not generalize
well to new data. This can lead to poor performance when
the model is applied to real-world clinical settings. Sec-
ondly, small sample sizes can result in biased or incomplete

data, which can affect the accuracy and generalizability of
the model. For example, if the data is biased toward a par-
ticular demographic group, the model may not perform
well on other groups. Lastly, small sample sizes can limit
the complexity of the model that can be developed, as more
complex models require larger sample sizes to learn and
generalize well. Therefore, it is important to carefully con-
sider the sample size when developing ML-based clinical
predictive models to ensure that they are accurate, unbiased,
and generalizable.

While our study provides a comprehensive approach to
the application of ML in the context of traumatic ¢SCls, we
recognize several limitations that necessitate further research
and refinement. Primarily, our study’s population may not be
entirely representative of all patients with traumatic ¢SCI.
The data leveraged for our analysis was extracted from the
ACS-TQP dataset, which primarily represents patients from
hospitals equipped to meet the ACS-TQP reporting require-
ments, potentially leading to an overrepresentation of these
specific hospitals. Thus, it is possible our dataset may inher-
ently hold biases, which should be taken into account when
interpreting the results. Moreover, our study’s geographical
limitation to the United States also narrows the applicability
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Fig. 5. (A). The fifteen most important features and their mean SHAP values for the model predicting the outcome in-hospital mortality with the Random
Forest algorithm. (B). The fifteen most important features and their mean SHAP values for the model predicting the outcome nonhome discharges with the
CatBoost algorithm. (C). The fifteen most important features and their mean SHAP values for the model predicting the outcome prolonged length of stay
with the Random Forest algorithm. (D). The fifteen most important features and their mean SHAP values for the model predicting the outcome prolonged
length of intensive care unit stay with the CatBoost algorithm. (E). The fifteen most important features and their mean SHAP values for the model predicting

the outcome major complications with the XGBoost algorithm.

of our findings. In light of these limitations, it is essential to across the globe. The scope of the data sources is another
acknowledge that the outcomes may not be universally appli- important limitation to consider. While the ACS-TQP dataset
cable or generalizable to different clinical environments provides exhaustive information, the reliance on a singular
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dataset potentially limits the broader applicability of our
models. Therefore, external validation using independent
datasets from diverse sources and geographical locations
would further reinforce our models’ robustness and gener-
alizability. Additionally, the potential presence of coding
errors and inaccuracies in large clinical databases, like the
one used in our study, should be taken into consideration.
For instance, the possibility of inaccuracies in the recording
of patients’ comorbidity information within the ACS-TQP
database may impact the overall performance of our models.
Finally, although our study offers a promising start, addi-
tional relevant variables such as detailed imaging parameters
might improve the performance of our ML models. The
inclusion of these specific variables could offer more
nuanced and accurate predictions for individual patient out-
comes, pushing the boundaries of precision medicine in the
context of traumatic cSCIs. To summarize, while our study
demonstrates the potential of ML in enhancing precision
medicine for traumatic cSCls, it is incumbent to conduct fur-
ther research, including more diverse data sources and exter-
nal validation, before our models can be fully integrated into
clinical practice.

Conclusions

This study has demonstrated that ML algorithms can
effectively predict in-hospital outcomes for patients with
¢SCI, and the development of a user-friendly web applica-
tion makes the integration of these algorithms into clinical
practice feasible. The results of this study show that ML
algorithms can assist in risk stratification for cSCI patients,
specifically for predicting in-hospital mortality and non-
home discharges with good discriminatory power and pro-
longed LOS with fair discriminatory ability. While their
performance in predicting prolonged ICU-LOS and major
complications was relatively poor, the potential benefits of
using ML algorithms to personalize care and predict out-
comes for cSCI patients are significant. By providing visual
explanations of the predictions, this tool can help establish
confidence in the predictions and encourage their adoption
in clinical practice. The incorporation of this tool can sup-
port quality assurance initiatives, guide treatment strategies,
prioritize care, plan for discharge needs, facilitate shared
decision-making, and ultimately improve patient outcomes.
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