
ARTICLE IN PRESS

The Spine Journal 000 (2023) 1−14
Clinical Study
FDA device/

Author discl

Inc (B); Other

Trips/Travel: A

https://doi.org/

1529-9430/© 2
Precision medicine for traumatic cervical spinal cord

injuries: accessible and interpretable machine learning

models to predict individualized in-hospital outcomes

Mert Karabacak, MD, Konstantinos Margetis, MD, PhD*

Department of Neurosurgery, Mount Sinai Health System, 1468 Madison (Ave), New York, 10029 NY, USA

Received 7 May 2023; revised 28 June 2023; accepted 13 August 2023
Abstract B
drug sta

osures:

Office:

ccelus

10.101

023 Els
ACKGROUND CONTEXT: A traumatic spinal cord injury (SCI) can cause temporary or per-

manent motor and sensory impairment, leading to serious short and long-term consequences that

can result in significant morbidity and mortality. The cervical spine is the most commonly affected

area, accounting for about 60% of all traumatic SCI cases.

PURPOSE: This study aims to employ machine learning (ML) algorithms to predict various out-

comes, such as in-hospital mortality, nonhome discharges, extended length of stay (LOS), extended

length of intensive care unit stay (ICU-LOS), and major complications in patients diagnosed with

cervical SCI (cSCI).

STUDY DESIGN: Our study was a retrospective machine learning classification study aiming to

predict the outcomes of interest, which were binary categorical variables, in patients diagnosed

with cSCI.

PATIENT SAMPLE: The data for this study were obtained from the American College of Sur-

geons (ACS) Trauma Quality Program (TQP) database, which was queried to identify patients who

suffered from cSCI between 2019 and 2021.

OUTCOME MEASURES: The outcomes of interest of our study were in-hospital mortality, non-

home discharges, prolonged LOS, prolonged ICU-LOS, and major complications. The study evalu-

ated the models’ performance using both graphical and numerical methods. The receiver operating

characteristic (ROC) and precision-recall curves (PRC) were used to assess model performance

graphically. Numerical evaluation metrics included AUROC, balanced accuracy, weighted area

under PRC (AUPRC), weighted precision, and weighted recall.

METHODS: The study employed data from the American College of Surgeons (ACS) Trauma

Quality Program (TQP) database to identify patients with cSCI. Four ML algorithms, namely

XGBoost, LightGBM, CatBoost, and Random Forest, were utilized to develop predictive models.

The most effective models were then incorporated into a publicly available web application

designed to forecast the outcomes of interest.

RESULTS: There were 71,661 patients included in the analysis for the outcome mortality, 67,331

for the outcome non-home discharges, 76,782 for the outcome prolonged LOS, 26,615 for the

outcome prolonged ICU-LOS, and 72,132 for the outcome major complications. The algorithms

exhibited an AUROC value range of 0.78 to 0.839 for in-hospital mortality, 0.806 to 0.815 for

nonhome discharges, 0.679 to 0.742 for prolonged LOS, 0.666 to 0.682 for prolonged ICU-LOS,

and 0.637 to 0.704 for major complications. An open access web application was developed as part

of the study, which can generate predictions for individual patients based on their characteristics.

CONCLUSIONS: Our study suggests that ML models can be valuable in assessing risk for

patients with cervical cSCI and may have considerable potential for predicting outcomes during

hospitalization. ML models demonstrated good predictive ability for in-hospital mortality and non-

home discharges, fair predictive ability for prolonged LOS, but poor predictive ability for pro-

longed ICU-LOS and major complications. Along with these promising results, the development of
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a user-friendly web application that facilitates the integration of these models into clinical practice

is a significant contribution of this study. The product of this study may have significant implica-

tions in clinical settings to personalize care, anticipate outcomes, facilitate shared decision making

and informed consent processes for cSCI patients. © 2023 Elsevier Inc. All rights reserved.
Keywords: A
rtificial Intelligence; Machine learning; Neurotrauma; Outcome prediction; Spinal cord injury; Spinal trauma;

Web application
Introduction

An acute traumatic spinal cord injury (SCI) can result in

temporary or permanent motor and sensory impairment,

leading to devastating short and long-term consequences

that carry significant morbidity and mortality [1−3]. In

North America, the estimated annual incidence of SCI is 40

cases per million [4]. While chronic SCI affects nearly

300,000 people in the United States alone, the impact of

SCI on an individual’s longevity, functional ability, psycho-

logical well-being, and socioeconomic stability is substan-

tial [5−7]. Among all traumatic SCI cases, the cervical

spine is the most commonly affected area, accounting for

approximately 60% of cases [8,9]. Moreover, compared to

thoracic or lumbosacral injuries, cervical SCI (cSCI) is

associated with higher rates of adverse events and mortality

[10−12].
Due to the critical role of timely and effective diagnosis

and treatment in managing SCI, there is a promising opportu-

nity for machine learning (ML) approaches to improve the

quality of care and best practices [13]. Additionally, person-

alized or precision medicine can be beneficial in SCI patients

by accounting for the inherent variability in outcomes, func-

tional prognosis, and rehabilitation journey among this popu-

lation, thus allowing for tailored expectations and

management strategies. ML-based clinical predictive models

offer several advantages over conventional models that typi-

cally utilize logistic regression or other linear regression

techniques. One of the primary advantages is the ability to

handle nonlinear relationships between predictor variables

and outcomes. ML algorithms can capture complex patterns

and interactions that may be missed by conventional models

[14−16]. Additionally, ML algorithms can identify the most

important features for prediction, which can be helpful for

clinicians to identify which factors are most relevant for a

particular outcome [17,18]. These algorithms can also handle

missing data more effectively than conventional models,

which can improve model accuracy [19]. Furthermore, ML

algorithms have the potential to achieve higher accuracy

than conventional models, especially when the data is com-

plex, or the relationships between predictors and outcomes

are nonlinear [18,20]. Finally, ML algorithms are better able

to generalize to new data than conventional models, which

can improve the generalizability of the model [18,21]. Over-

all, these advantages can lead to better clinical decision-mak-

ing and patient outcomes.

Several studies have established the impressive predic-

tive capabilities of ML models for SCI outcomes [22−25].
Despite this, there is currently no prognostic tool available

that is specific to the traumatic cSCI patient population and

can be easily used in a clinical setting. This gap in the litera-

ture and clinical practice highlights the need for further

research to establish and validate ML models specifically

tailored to predict cSCI outcomes and can be integrated

into clinical practice. This study aims to develop a user-

friendly web application that integrates ML algorithms to

predict in-hospital outcomes for patients with cSCI. The

tool identifies high-risk patients and provides visual explan-

ations of the predictions to establish confidence and encour-

age adoption in clinical practice. It supports clinicians in

guiding treatment strategies, prioritizing care, and planning

for discharge needs. Additionally, the tool can facilitate

shared decision-making and support quality assurance ini-

tiatives. Comparing the tool’s predictions to clinical acu-

men could determine whether the analysis adds value to the

existing decision-making process. The application has sig-

nificant implications for clinical practice, improving patient

care and outcomes in the management of cSCI through the

integration of ML algorithms.

Methods

Data source

The data for this study were obtained from the American

College of Surgeons (ACS) Trauma Quality Program

(TQP) database, which was queried to identify patients who

suffered from cSCI between 2019 and 2021.

Guidelines

We followed the Transparent Reporting of Multivariable

Prediction Models for Individual Prognosis or Diagnosis

(TRIPOD) and Journal of Medical Internet Research

(JMIR) Guidelines for Developing and Reporting Machine

Learning Predictive Models in Biomedical Research

[26,27]. Our study was a retrospective machine learning

classification study aiming to predict the outcomes of inter-

est, which were binary categorical variables, in patients

diagnosed with cSCI.

Study population

Adult patients (aged 18 and over) with isolated cSCI

were identified by the International Classification of Dis-

eases, Tenth Revision (ICD-10) code S12X, S13X, and

S14X. We excluded patients with the following criteria: (1)
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patients with concurrent thoracolumbar SCI (S22X, S23X,

S24X, S32X, S33X, S34X); (2) patients with severe injuries

(Abbreviated Injury Scale [AIS] injury severity score≥3) to
the head, face, thorax, abdomen, upper extremities, lower

extremities, and unspecified body regions; and (3) patients

with major polytrauma (Injury Severity Score [ISS] ≥27),
(4) patients with minor cSCIs (AIS injury severity score=1),

(5) patients with advanced directives limiting care, and (6)

patients with prehospital cardiac arrests.

With the second exclusion criteria, the intention was to

isolate cSCI to assess its impacts without the confounding

effects of other severe injuries in other body regions.

Regarding the exclusion of minor cSCIs (AIS injury sever-

ity score = 1), this choice was informed by the nature of the

injuries that fall into this category. AIS injury severity score

of one often encompasses injuries like spinal muscle strains.

The inclusion of such injuries would introduce a significant

level of heterogeneity to our patient group, which might

compromise the specificity of our findings. By focusing on

nonminor cSCIs, we aimed to provide a more homogenous

patient group and hence more reliable model predictions.
Predictor variables

The predictor variables that were deemed to be known

before the occurrence of the outcomes of interest were cho-

sen from the TQP dataset. A list of the variables utilized in

the analysis can be found in Supplementary Table 1.
Outcome of interest

The outcomes of interest of our study were in-hospital

mortality, nonhome discharges, prolonged LOS, prolonged

ICU-LOS, and major complications.

Nonhome discharges included discharges to various

healthcare facilities such as inpatient rehab or designated

units, home under the care of organized home health serv-

ices, skilled nursing facilities, long-term care hospitals,

short-term general hospitals for inpatient care, and interme-

diate care facilities. Patients with discharges to court/law

enforcement, psychiatric hospital or psychiatric unit of a

hospital, another type of institution not defined elsewhere,

and patients who left against medical advice or discontin-

ued care were excluded from the nonhome discharges anal-

ysis since these outcomes were not considered as a proxy

for functional status at discharge. Patients who died during

hospitalization or were discharged to hospice care were

also excluded from the analysis for nonhome discharges.

LOS and ICU-LOS were assessed by excluding patients

who died during hospitalization, left against medical

advice, or discontinued care since these patients may have

artificially lowered LOS. Prolonged LOS was defined as

total LOS greater than 80% of the included patient popula-

tion (>9 days), and prolonged ICU-LOS was defined as

total ICU-LOS greater than 80% of the included patient

population (>7 days).
Major complications included severe in-hospital compli-

cations such as cardiac arrest with resuscitation, central

line-associated bloodstream infection, catheter-related

bloodstream infection, deep surgical site infection, deep

vein thrombosis, pulmonary embolism, unplanned intuba-

tion, acute kidney injury, myocardial infarction, acute respi-

ratory distress syndrome, unplanned return to the operating

room, severe sepsis, stroke or cerebrovascular event,

unplanned admission to the ICU, and ventilator-associated

pneumonia.

Data preprocessing

Imputation was employed to avoid introducing bias by

excluding patients with missing values. After removing var-

iables with missing values for more than 25% of the patient

population, the k-nearest neighbor (kNN) imputation algo-

rithm was used to fill in the missing values in the remaining

continuous variables. To ensure that all feature values were

weighed equally, a Min-Max Scaler was used to place each

continuous variable in the (0, 1) range. After missing values

of categorical variables were imputed with “Unknown” or

“Unknown/Other,” all were label-encoded.

Training, validation, and test sets

The data from 2019 to 2021 was split into training, vali-

dation, and test sets in a 60:20:20 ratio. The training set was

used to train the models, the validation set to fine-tune the

hyperparameters and calibrate the models, and the test set

to evaluate the models’ performance.

To account for the class imbalance for the positive out-

comes of interest the Synthetic Minority Over-sampling

Technique (SMOTE) was used to artificially generate cases

of positive outcomes of interest based on the training sets

[28].

Modeling

This study employed four machine learning algorithms,

namely XGBoost, LightGBM, CatBoost, and Random For-

est, to build the prediction models for each outcome. The

optimization of these algorithms was performed using the

Optuna library, with the objective of maximizing the area

under the receiver operating characteristic curve (AUROC)

metric [29]. To establish a benchmark for optimization, the

TPESampler algorithm was used. The final models were

developed using the training sets and the optimized hyper-

parameters. Platt scaling, also known as isotonic regression,

was used to calibrate the models [30,31]. All machine learn-

ing analyses were conducted using Python version 3.7.15.

Performance evaluation

The study evaluated the models’ performance using both

graphical and numerical methods. The receiver operating

characteristic (ROC) and precision-recall curves (PRC)

were used to assess model performance graphically.
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Numerical evaluation metrics included AUROC, balanced

accuracy, weighted area under PRC (AUPRC), weighted

precision, and weighted recall. Calibration was assessed

using the Brier score. We also employed SHapley Additive

exPlanations (SHAP) framework to determine the relative

importance of predictor variables [32].
Online prediction tool

An online prediction tool was developed to generate patient-

level predictions (Fig. 1). This tool is built upon the models dis-

cussed in the present study. Both the tool and its source code

are publicly available through Hugging Face, a platform that

facilitates sharing of machine learning models. The following

link will take readers to the online prediction tool: https://hug

gingface.co/spaces/MSHS-Neurosurgery-Research/TQP-cSCI.
Statistical analysis

For continuous variables with a normal distribution,

means (§ standard deviations) were reported, whereas

medians (interquartile ranges) were presented for non-nor-

mally distributed continuous variables. For categorical vari-

ables, the number of patients was reported with

percentages. Statistical differences between groups were

determined using various statistical tests. Specifically, the

independent t-test was applied for normally distributed con-

tinuous variables with equal variances, Welch’s t-test was

used for normally distributed continuous variables with

unequal variances, Mann-Whitney U test was used for non-
normally distributed continuous variables, and Pearson’s

chi-squared test was used for categorical variables. The nor-

mality of the continuous variables was assessed using the

Shapiro-Wilk test, and the equality of variances was evalu-

ated using Levene’s test. Statistical significance was con-

sidered when p<.05. All statistical analyses were

performed using Python version 3.7.15.
Results

Initially, 391,960 patients were identified with the ICD-

10 codes S12X, S13X, and S14X. After excluding 166,058

patients with concurrent thoracolumbar SCI, other exclu-

sion criteria were applied sequentially (Fig. 2). There were

71,661 patients included in the analysis for the outcome

mortality (n=2,280 [3.18%] mortality), 67,331 for the out-

come non-home discharges (n=31,300 [46.49%] nonhome

discharges), 76,782 for the outcome prolonged LOS

(n=13,404 [17.46%] prolonged LOS), 26,615 for the out-

come prolonged ICU-LOS (n=4,445 [16.7%] prolonged

ICU-LOS), and 72,132 for the outcome major complica-

tions (n=3,891 [5.39%] major complications). Characteris-

tics of the patient population are presented in Table 1.

Differences among the patients belonging to different out-

come groups are presented in Supplementary Tables 2, 3, 4,

5, and 6.

The most accurately predicted outcome in terms of

AUROC was the in-hospital mortality, with a mean

AUROC of 0.816 (95% confidence interval [CI] 0.790

−0.826). Among the four different algorithms, the Random

https://huggingface.co/spaces/MSHS-Neurosurgery-Research/TQP-cSCI
https://huggingface.co/spaces/MSHS-Neurosurgery-Research/TQP-cSCI


Fig. 2. Patient selection flowchart.
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Forest algorithm demonstrated the best discriminative abil-

ity across all outcomes, with a mean AUROC of 0.752

(95% CI 0.731−0.760). The performance metrics for the

algorithms are provided in Table 2.

The ROC and PRC for each of the five outcomes are

illustrated in Figs. 3 and 4, respectively. Meanwhile, Fig. 5

presents the SHAP bar plots for the top-performing algo-

rithm for each outcome. Supplementary Figures 1 to 5 con-

tain the SHAP bar plots for the remaining algorithms for

every outcome. SHAP bar plots offer an overview of the

significance of features in a model. Within these plots, the

value of each feature is signified by a bar, its length relating

to the average absolute SHAP value from all occurrences.

This importance gauge signifies the average strength of a

feature’s input to the model’s prediction. The features are

arranged according to their significance, with the most

influential feature at the top. For instance, Fig. 5D shows

the SHAP bar plot for the XGBoost model’s prediction of

prolonged ICU-LOS, where “Systolic Blood Pressure” pos-

sesses the longest bar. This signifies that systolic blood

pressure is the most critical predictor of prolonged ICU-

LOS in the model, meaning that systolic blood pressure has

globally the greatest impact on the model’s prediction of

prolonged ICU-LOS compared to the other features.
Discussion

The purpose of this study was to explore the potential

of ML models in enhancing the prediction of adverse

in-hospital outcomes following cSCI by utilizing an

expanded set of clinical variables. Our ML models were

developed to forecast in-hospital mortality, nonhome

discharges, prolonged LOS, prolonged ICU-LOS, and

major complications. The findings of the study suggest

that ML algorithms can facilitate the risk stratification

of cSCI patients and offer valuable insights into predict-

ing adverse in-hospital outcomes. The results regarding

the discriminatory performances of our models indicate

good classification performance for predicting in-hospi-

tal mortality and nonhome discharges, fair performance

for predicting prolonged LOS, and poor performance for

predicting prolonged ICU-LOS and major complications

[33]. Additionally, we developed an open-access web

application that provides probabilistic predictions for the

outcomes investigated in this study for cSCI patients.

The application incorporates SHAP plots to offer visual

explanations of the predictions, aiming to establish con-

fidence in the predictions and encourage their adoption

in clinical practice. To the best of our knowledge, this



Table 1

Patient characteristics.

Variables Total

Mean (§SD),

Median (IQR),

or n (%)

Age 62.0 (§33.0)

Sex Male 50263 (63.0%)

Female 29199 (36.6%)

Non-binary 8 (0.0%)

Unknown 299 (0.4%)

Race White 59494 (74.6%)

Black 12218 (15.3%)

Asian 1536 (1.9%)

Other/unknown 6521 (8.2%)

Ethnicity Not Hispanic or

Latino

70480 (88.4%)

Hispanic or Latino 6409 (8.0%)

Unknown 2880 (3.6%)

Weight 79.4 (§25.0)

Height 172.7 (§15.0)

Systolic Blood Pressure 142.0 (§34.0)

Pulse Rate 82.0 (§22.0)

Supplemental Oxygen No supplemental

oxygen

66663 (83.6%)

Supplemental oxygen 7854 (9.8%)

Unknown 5252 (6.6%)

Pulse Oximetry 98.0 (§3.0)

Respiratory Assistance Unassisted respira-

tory rate

74428 (93.3%)

Assisted respiratory

rate

1593 (2.0%)

Unknown 3748 (4.7%)

Respiratory Rate 18.0 (§4.0)

Temperature 36.7 (§0.5)

GCS - Eye 4.0 (§0.0)

GCS - Verbal 5.0 (§0.0)

GCS - Motor 6.0 (§0.0)

Total GCS 15.0 (§0.0)

Fracture of C1 Vertebra No 76584 (96.0%)

Yes 3185 (4.0%)

Fracture of C2 Vertebra No 70710 (88.6%)

Yes 9059 (11.4%)

Fracture of C3 Vertebra No 78541 (98.5%)

Yes 1228 (1.5%)

Fracture of C4 Vertebra No 78209 (98.0%)

Yes 1560 (2.0%)

Fracture of C5 Vertebra No 77472 (97.1%)

Yes 2297 (2.9%)

Fracture of C6 Vertebra No 76286 (95.6%)

Yes 3483 (4.4%)

Fracture of C7 Vertebra No 75685 (94.9%)

Yes 4084 (5.1%)

Rupture of Cervical

Intervertebral Disc

No 79549 (99.7%)

Yes 220 (0.3%)

Subluxation and Dislo-

cation of C0/C1

Vertebrae

No 79677 (99.9%)

Yes 92 (0.1%)

Subluxation and Dislo-

cation of C1/C2

Vertebrae

No 79397 (99.5%)

Yes 372 (0.5%)

Subluxation and Dislo-

cation of C2/C3

Vertebrae

No 79660 (99.9%)

Yes 109 (0.1%)

Table 1 (Continued)

Variables Total

Mean (§SD),

Median (IQR),

or n (%)

Subluxation and Dislo-

cation of C3/C4

Vertebrae

No 79579 (99.8%)

Yes 190 (0.2%)

Subluxation and Dislo-

cation of C4/C5

Vertebrae

No 79512 (99.7%)

Yes 257 (0.3%)

Subluxation and Dislo-

cation of C5/C6

Vertebrae

No 79457 (99.6%)

Yes 312 (0.4%)

Subluxation and Dislo-

cation of C6/C7

Vertebrae

No 79549 (99.7%)

Yes 220 (0.3%)

Subluxation and Dislo-

cation of C7/T1

Vertebrae

No 79733 (100.0%)

Yes 36 (0.0%)

Concussion and Edema

of cSC

No 78654 (98.6%)

Yes 1115 (1.4%)

Complete Lesion of cSC No 75477 (94.6%)

Yes 4292 (5.4%)

Anterior Cord Syndrome

of cSC

No 79677 (99.9%)

Yes 92 (0.1%)

Brown-Sequard Syn-

drome of cSC

No 79510 (99.7%)

Yes 259 (0.3%)

Other Incomplete

Lesions of cSC

No 78474 (98.4%)

Yes 1295 (1.6%)

Current Smoker No 62076 (77.8%)

Yes 17667 (22.2%)

Unknown 26 (0.0%)

Alcohol Use Disorder No 73286 (91.9%)

Yes 6435 (8.1%)

Unknown 48 (0.1%)

Substance Abuse

Disorder

No 74620 (93.6%)

Yes 5100 (6.4%)

Unknown 49 (0.1%)

Diabetes Mellitus No 65628 (82.3%)

Yes 14118 (17.7%)

Unknown 23 (0.0%)

Hypertension No 44189 (55.4%)

Yes 35546 (44.6%)

Unknown 34 (0.0%)

Congestive Heart

Failure

No 75761 (95.0%)

Yes 3998 (5.0%)

Unknown 10 (0.0%)

History of Myocardial

Infarction

No 78986 (99.0%)

Yes 640 (0.8%)

Unknown 143 (0.2%)

Angina Pectoris No 79568 (99.8%)

Yes 193 (0.2%)

Unknown 8 (0.0%)

History of Cerebrovas-

cular Accident

No 77521 (97.2%)

Yes 2222 (2.8%)

Unknown 26 (0.0%)

Peripheral Arterial

Disease

No 78877 (98.9%)

Yes 860 (1.1%)

Unknown 32 (0.0%)

Chronic Obstructive

Pulmonary Disease

No 73689 (92.4%)

Yes 6069 (7.6%)

Unknown 11 (0.0%)
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Table 1 (Continued)

Variables Total

Mean (§SD),

Median (IQR),

or n (%)

Chronic Renal Failure No 78208 (98.0%)

Yes 1541 (1.9%)

Unknown 20 (0.0%)

Cirrhosis No 78874 (98.9%)

Yes 871 (1.1%)

Unknown 24 (0.0%)

Bleeding Disorder No 79016 (99.1%)

Yes 746 (0.9%)

Unknown 7 (0.0%)

Disseminated Cancer No 79247 (99.4%)

Yes 514 (0.6%)

Unknown 8 (0.0%)

Currently Receiving

Chemotherapy for

Cancer

No 79330 (99.4%)

Yes 429 (0.5%)

Unknown 10 (0.0%)

Dementia No 75436 (94.6%)

Yes 4327 (5.4%)

Unknown 6 (0.0%)

Attention Deficit Disor-

der or Attention Defi-

cit Hyperactivity

Disorder

No 78903 (98.9%)

Yes 861 (1.1%)

Unknown 5 (0.0%)

Mental or Personality

Disorder

No 70540 (88.4%)

Yes 9163 (11.5%)

Unknown 66 (0.1%)

Ability to Complete

Age-Appropriate ADL

No 71467 (89.6%)

Yes 8288 (10.4%)

Unknown 14 (0.0%)

Pregnancy Not applicable (male

patient)

50263 (63.0%)

No 29398 (36.8%)

Yes 74 (0.1%)

Unknown 34 (0.0%)

Anticoagulant Therapy No 69992 (87.7%)

Yes 9766 (12.2%)

Unknown 11 (0.0%)

Steroid Use No 78825 (98.8%)

Yes 938 (1.2%)

Unknown 6 (0.0%)

Days from Incident to ED or Hospital Arrival 1.0 (§0.0)

Transport Mode Ground ambulance 65057 (81.6%)

Private/public vehi-

cle/walk-in

7628 (9.6%)

Air ambulance 6399 (8.0%)

Other/unknown 685 (0.9%)

Inter-Facility Transfer No 49348 (61.9%)

Yes 30411 (38.1%)

Unknown 10 (0.0%)

Trauma Type Blunt 77651 (97.3%)

Penetrating 1422 (1.8%)

Other/unknown 696 (0.9%)

Injury Intent Unintentional 76594 (96.0%)

Assault 2436 (3.0%)

Other/unknown 739 (0.9%)

Mechanism of Injury Fall 43530 (54.6%)

MVT occupant 20907 (26.2%)

Struck by or against 2863 (3.6%)

Other MVT 2548 (3.2%)

MVT motorcyclist 2094 (2.6%)

Other transport 1919 (2.4%)

Table 1 (Continued)

Variables Total

Mean (§SD),

Median (IQR),

or n (%)

Other pedal cyclist 1494 (1.9%)

MVT pedestrian 962 (1.2%)

Firearm 1068 (1.3%)

Other/unknown 2384 (3.0%)

Protective Device None 56196 (70.4%)

Belt 13939 (17.5%)

Airbag present 4759 (6.0%)

Helmet 2761 (3.5%)

Other/unknown 2114 (2.6%)

Work-Related No/unknown 77762 (97.5%)

Yes 2007 (2.5%)

Blood Transfusion 0.0 (§0.0)

Surgical Intervention None 77843 (97.6%)

Fusion 1253 (1.6%)

Decompression 563 (0.7%)

Other 110 (0.1%)

Alcohol Screen Yes 41339 (51.8%)

No 38277 (48.0%)

Unknown 153 (0.2%)

Alcohol Screen Result 0.0 (§0.0)

Drug Screen -

Amphetamine

No 26407 (33.1%)

Yes 2488 (3.1%)

Not tested 50874 (63.8%)

Drug Screen -

Barbiturate

No 28612 (35.9%)

Yes 283 (0.4%)

Not tested 50874 (63.8%)

Drug Screen -

Benzodiazepines

No 27451 (34.4%)

Yes 1444 (1.8%)

Not tested 50874 (63.8%)

Drug Screen -

Cannabinoid

No 22285 (27.9%)

Yes 6610 (8.3%)

Not tested 50874 (63.8%)

Drug Screen - Cocaine No 26636 (33.4%)

Yes 2259 (2.8%)

Not tested 50874 (63.8%)

Drug Screen - MDMA

or Ecstasy

No 28744 (36.0%)

Yes 151 (0.2%)

Not tested 50874 (63.8%)

Drug Screen -

Methadone

No 28750 (36.0%)

Yes 145 (0.2%)

Not tested 50874 (63.8%)

Drug Screen -

Methamphetamine

No 28120 (35.2%)

Yes 775 (1.0%)

Not tested 50874 (63.8%)

Drug Screen - Opioid No 26882 (33.7%)

Yes 2013 (2.5%)

Not tested 50874 (63.8%)

Drug Screen -

Oxycodone

No 28465 (35.7%)

Yes 430 (0.5%)

Not tested 50874 (63.8%)

Drug Screen -

Phencyclidine

No 28701 (36.0%)

Yes 194 (0.2%)

Not tested 50874 (63.8%)

Drug Screen - Tricyclic

Antidepressant

No 28783 (36.1%)

Yes 112 (0.1%)

Not tested 50874 (63.8%)

ACS Verification Level Level I Trauma

Center

35220 (44.2%)

Level II Trauma

Center

19979 (25.0%)
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Table 1 (Continued)

Variables Total

Mean (§SD),

Median (IQR),

or n (%)

Level III Trauma

Center

3900 (4.9%)

Unknown 20670 (25.9%)

Hospital Type Non-profit 69392 (87.0%)

For profit 9896 (12.4%)

Government 449 (0.6%)

Unknown 32 (0.0%)

Facility Bed Size More than 600 28994 (36.4%)

401 to 600 22663 (28.4%)

201 to 400 22735 (28.5%)

200 or fewer 5377 (6.7%)

Primary Method of

Payment

Medicare 31343 (39.3%)

Private/commercial

insurance

26534 (33.3%)

Medicaid 9621 (12.1%)

Self-pay 6571 (8.2%)

Other/unknown 5700 (7.2%)

SD, standard deviation; IQR, interquartile range; GCS, Glasgow Coma

Scale; cSC, cervical spinal cord, ADL, activities of daily living; ED, emer-

gency department; ACS, American College of Surgeons

8 M. Karabacak and K. Margetis / The Spine Journal 00 (2023) 1−14

ARTICLE IN PRESS
is the first web application of its kind to provide predic-

tions with additional interpretability for cSCI outcomes

using ML.

Our study introduces ML models, coupled with a web

application, that could offer personalized and quantitative

risk assessments for specific undesired outcomes following

cSCI. This advancement stands to significantly enhance tra-

ditional methods that rely on generic risks based on popula-

tion averages or subjective assessments by physicians.

While we acknowledge that our study does not directly

demonstrate the impact of these models on shared decision-

making or the informed consent process, we posit that the

potential clinical applications of our models are deserving

of further investigation. The integration of these models

into clinical practice could support clinical decision-making

throughout a patient’s hospital stay by forecasting the risk

of functional impairment, thus assisting in prioritizing care

and planning for discharge needs. This information can

guide informed consent processes and shared decision-mak-

ing, giving patients and caregivers insights into potential

needs for nursing assistance postdischarge, enabling appro-

priate arrangements. Additionally, the implementation of

our ML models and web application may contribute to qual-

ity assurance initiatives. They can serve as tools to identify

unexpected patterns of undesired outcomes, particularly in

patients predicted to be at low risk. This discrepancy

between predicted and actual outcomes may reflect gaps in

processes, hospital policies, or specific care gaps that vary

across different populations. The findings from this compar-

ison can then drive policy changes or resource optimization

strategies to improve patient outcomes. For instance, if we

observe undesired outcomes in low-risk patients, this might
indicate a systemic process gap or a population-specific

resource barrier that needs to be addressed. In summary,

our approach could potentially improve patient care and

bolster clinical decision-making, leading to improved out-

comes for individuals with cSCI. We envisage the web

application being used by clinicians to validate their clinical

decisions based on the predictions generated by the ML

models. By providing additional quantitative risk assess-

ments, the tool may aid clinicians in making more informed

decisions that consider a patient’s specific circumstances

and medical history. Such an approach could enhance the

integration and workflow of multimodal and multidisciplin-

ary care for cSCI patients. Nonetheless, future studies are

needed to ascertain if the analysis outperforms or supple-

ments clinical acumen, as well as to explore its integration

into daily care and management.

We acknowledge that the study’s main limitations are the

clinical accuracy and relevance of the predictions, given the

many confounders associated with the outcomes of interest

that have not been accounted for due to the limited granular-

ity within this database. While the study is mainly academic

at this point, we believe that the potential clinical applica-

tions of the tool warrant further investigation. Customization

of ML models for specific hospitals is possible by training

them with data from that particular hospital, and updates can

be made as new data becomes available to enhance their pre-

dictive capabilities. In response to concerns raised regarding

the clinical relevance and accuracy of our models in real-

world scenarios, future research should focus on addressing

these limitations by incorporating more granular and com-

prehensive data sources that account for these confounders.

By doing so, the predictive capabilities of the ML models

could be significantly improved, further enhancing their

potential clinical applications and utility.

When dealing with imbalanced datasets in ML classifica-

tion tasks, it is crucial to exercise caution and understand the

metrics used to evaluate model performance. Class distribu-

tion refers to the proportion of instances in each category in

a classification problem. In our context, the “majority class”

signifies the category with more instances, while the

“minority class” denotes the category with fewer instances.

For instance, in predicting in-hospital mortality following

cSCI, the majority of patients would likely fall into the

“patients without in-hospital mortality” category, making it

the majority class. In contrast, the “patients with in-hospital

mortality” category, having fewer instances, would constitute

the minority class. In our study, we used metrics such as bal-

anced accuracy, weighted precision, weighted recall, and

weighted AUPRC to assess the performance of our ML mod-

els for predicting outcomes after cSCI. These metrics take

into account the class distribution of the data, giving more

weight to the minority class [34−36]. This allows for the fair
evaluation of a model’s performance in both classes and a

more comprehensive view of the model’s performance, con-

sidering the class distribution in the data. In contrast,

unweighted versions of these metrics may not be reliable in



Table 2

Model performances

Outcome Algorithm Weighted precision

(95% CI)

Weighted recall

(95% CI)

Weighted AUPRC

(95% CI)

Balanced accuracy

(95% CI)

AUROC

(95% CI)

Brier score

(95% CI)

Mortality XGBoost 0.958 (0.955−0.961) 0.789 (0.782−0.796) 0.141 (0.135−0.147) 0.713 (0.706−0.72) 0.821 (0.791−0.827) 0.028 (0.025−0.031)
LightGBM 0.958 (0.955−0.961) 0.788 (0.781−0.795) 0.142 (0.136−0.148) 0.715 (0.708−0.722) 0.822 (0.793−0.831) 0.028 (0.025−0.031)
CatBoost 0.949 (0.945−0.953) 0.949 (0.945−0.953) 0.055 (0.051−0.059) 0.573 (0.565−0.581) 0.78 (0.758−0.798) 0.029 (0.026−0.032)
Random Forest 0.951 (0.947−0.955) 0.961 (0.958−0.964) 0.145 (0.139−0.151) 0.564 (0.556−0.572) 0.839 (0.816−0.848) 0.028 (0.025−0.031)
Mean 0.954 (0.95−0.958) 0.872 (0.866−0.877) 0.121 (0.115−0.126) 0.641 (0.634−0.649) 0.816 (0.79−0.826) 0.028 (0.025−0.031)

Nonhome discharges XGBoost 0.735 (0.728−0.742) 0.733 (0.726−0.74) 0.757 (0.75−0.764) 0.734 (0.727−0.741) 0.807 (0.799−0.813) 0.18 (0.174−0.186)
LightGBM 0.737 (0.73−0.744) 0.735 (0.728−0.742) 0.759 (0.752−0.766) 0.735 (0.728−0.742) 0.806 (0.801−0.815) 0.179 (0.173−0.185)
CatBoost 0.739 (0.732−0.746) 0.737 (0.73−0.744) 0.641 (0.633−0.649) 0.737 (0.73−0.744) 0.815 (0.803−0.818) 0.177 (0.171−0.183)
Random forest 0.733 (0.726−0.74) 0.73 (0.723−0.737) 0.745 (0.738−0.752) 0.732 (0.725−0.739) 0.811 (0.796−0.81) 0.18 (0.174−0.186)
Mean 0.736 (0.729−0.743) 0.734 (0.727−0.741) 0.726 (0.718−0.733) 0.734 (0.728−0.742) 0.81 (0.8−0.814) 0.179 (0.173−0.185)

Prolonged LOS XGBoost 0.796 (0.79−0.802) 0.83 (0.824−0.836) 0.407 (0.399−0.415) 0.586 (0.578−0.594) 0.736 (0.737−0.757) 0.126 (0.121−0.131)
LightGBM 0.775 (0.768−0.782) 0.698 (0.691−0.705) 0.308 (0.301−0.315) 0.624 (0.616−0.632) 0.679 (0.668−0.69) 0.175 (0.169−0.181)
CatBoost 0.788 (0.782−0.794) 0.772 (0.765−0.779) 0.259 (0.252−0.266) 0.64 (0.632−0.648) 0.718 (0.712−0.732) 0.129 (0.124−0.134)
Random forest 0.786 (0.78−0.792) 0.816 (0.81−0.822) 0.372 (0.364−0.38) 0.596 (0.588−0.604) 0.742 (0.721−0.742) 0.128 (0.123−0.133)
Mean 0.786 (0.78−0.792) 0.779 (0.772−0.786) 0.336 (0.329−0.344) 0.612 (0.604−0.62) 0.719 (0.71−0.73) 0.14 (0.134−0.145)

Prolonged ICU-LOS XGBoost 0.784 (0.773−0.795) 0.776 (0.765−0.787) 0.327 (0.314−0.34) 0.615 (0.602−0.628) 0.674 (0.66−0.701) 0.129 (0.12−0.138)
LightGBM 0.779 (0.768−0.79) 0.699 (0.687−0.711) 0.327 (0.314−0.34) 0.617 (0.604−0.63) 0.666 (0.651−0.69) 0.132 (0.123−0.141)
CatBoost 0.775 (0.764−0.786) 0.765 (0.754−0.776) 0.219 (0.208−0.23) 0.599 (0.586−0.612) 0.682 (0.657−0.696) 0.13 (0.121−0.139)
Random forest 0.779 (0.768−0.79) 0.727 (0.715−0.739) 0.325 (0.312−0.338) 0.616 (0.603−0.629) 0.675 (0.651−0.692) 0.13 (0.121−0.139)
Mean 0.779 (0.768−0.79) 0.742 (0.73−0.753) 0.3 (0.287−0.312) 0.612 (0.599−0.625) 0.674 (0.655−0.695) 0.13 (0.121−0.139)

Major complications XGBoost 0.909 (0.904−0.914) 0.943 (0.939−0.947) 0.121 (0.116−0.126) 0.51 (0.502−0.518) 0.704 (0.683−0.72) 0.05 (0.046−0.054)
LightGBM 0.911 (0.906−0.916) 0.726 (0.719−0.733) 0.098 (0.093−0.103) 0.586 (0.578−0.594) 0.637 (0.618−0.658) 0.103 (0.098−0.108)
CatBoost 0.904 (0.899−0.909) 0.896 (0.891−0.901) 0.06 (0.056−0.064) 0.531 (0.523−0.539) 0.645 (0.619−0.658) 0.051 (0.047−0.055)
Random forest 0.904 (0.899−0.909) 0.936 (0.932−0.94) 0.102 (0.097−0.107) 0.514 (0.506−0.522) 0.691 (0.672−0.707) 0.05 (0.046−0.054)
Mean 0.907 (0.902−0.912) 0.875 (0.87−0.88) 0.095 (0.09−0.1) 0.535 (0.527−0.543) 0.669 (0.648−0.686) 0.064 (0.059−0.068)

AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve; CI, confidence interval.
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Fig. 3. (A). Algorithms’ receiver operator curves for the outcome in-hospital mortality. (B). Algorithms’ receiver operator curves for the outcome nonhome

discharges. (C). Algorithms’ receiver operator curves for the outcome prolonged length of stay. (D). Algorithms’ receiver operator curves for the outcome

prolonged length of intensive care unit stay. (E). Algorithms’ receiver operator curves for the outcome major complications.
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scenarios with imbalanced datasets since they do not con-

sider the class distribution and may give a false sense of

good performance by ignoring the minority class. Moreover,

interpreting AUPRC can be challenging since its baseline is

equal to the fraction of positive examples in the dataset,

which can lead to significantly lower values than the

AUROC, particularly for datasets with a low fraction of posi-

tive examples [37]. However, AUPRC may be more mean-

ingful for a specific classification task. Despite this, it is

often reported less frequently than AUROC due to its lower

absolute values. In our study, the mean weighted AUPRC

for predicting in-hospital mortality was 0.121, while the in-

hospital mortality ratio was 0.032, representing the baseline.

Finally, to assess the models’ calibration, we used the Brier

score, which measures the average squared difference

between predicted and actual probabilities [31,38]. A well-

calibrated model will have a Brier score close to zero, indi-

cating that the predicted probabilities are very close to the

actual probabilities.

We did not find any studies that presented ML models

for predicting all adverse in-hospital outcomes we investi-

gated after cSCI. However, some studies employed ML

techniques to predict various outcomes following SCI. For
example, Inoue et al. [25] evaluated the efficacy of ML

algorithms in predicting neurological outcomes in patients

with cSCI. The authors analyzed data from 165 patients

with cSCI and used commonly utilized predictors such as

demographics, magnetic resonance variables, and treatment

strategies. The predictive tools used were XGBoost, logistic

regression, and decision tree. The results showed that

XGBoost had the highest accuracy (81.1%) and the second

highest AUROC (0.867), followed by logistic regression

and decision tree. Similarly, Fallah et al. [24] aimed to

develop and validate a prognostic tool that could predict

mortality following traumatic SCI. They developed the Spi-

nal Cord Injury Risk Score (SCIRS) using ML techniques

on patient-level data from 849 participants. The validation

cohort consisted of 396 participants. The performance of

SCIRS was compared with the ISS, a measure used to pre-

dict mortality following general trauma. The SCIRS was

found to be more accurate than ISS in predicting both in-

hospital and 1-year mortality following traumatic SCI. The

AUROC for the SCIRS was 0.84 and 0.86 for 1-year mor-

tality prediction in the development and validation cohorts,

respectively. For in-hospital mortality, AUROC values

were 0.87 and 0.85 for the development and validation



Fig. 4. (A). Algorithms’ precision-recall curves for the outcome in-hospital mortality. (B). Algorithms’ precision-recall curves for the outcome nonhome dis-

charges. (C). Algorithms’ precision-recall curves for the outcome prolonged length of stay. (D). Algorithms’ precision-recall curves for the outcome pro-

longed length of intensive care unit stay. (E). Algorithms’ precision-recall curves for the outcome major complications.
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cohorts, respectively. Furthermore, Fan et al. aimed to

develop ML classifiers to predict prolonged ICU-LOS and

prolonged LOS in critical patients with SCI [23]. A total of

1,599 critical patients were included in the study, and data

were extracted from two databases. The authors developed

91 initial ML classifiers, and the top three initial classifiers

with the best performance were stacked into an ensemble

classifier with a logistic regressor. The ensemble classifiers

successfully predicted prolonged ICU-LOS and prolonged

LOS, with AUROCs of 0.864 and 0.815, in the three-time

five-fold cross-validation and 0.802 and 0.799, respectively,

in independent testing.

Although the reported performance metrics were compa-

rable with our study, these studies have some serious draw-

backs. First, compared to our study, these models were

developed using very small sample sizes. Developing ML-

based clinical predictive models using small sample sizes

can have several disadvantages. Firstly, small sample sizes

can result in overfitting, where the model is optimized to

perform well on the training data but does not generalize

well to new data. This can lead to poor performance when

the model is applied to real-world clinical settings. Sec-

ondly, small sample sizes can result in biased or incomplete
data, which can affect the accuracy and generalizability of

the model. For example, if the data is biased toward a par-

ticular demographic group, the model may not perform

well on other groups. Lastly, small sample sizes can limit

the complexity of the model that can be developed, as more

complex models require larger sample sizes to learn and

generalize well. Therefore, it is important to carefully con-

sider the sample size when developing ML-based clinical

predictive models to ensure that they are accurate, unbiased,

and generalizable.

While our study provides a comprehensive approach to

the application of ML in the context of traumatic cSCIs, we

recognize several limitations that necessitate further research

and refinement. Primarily, our study’s population may not be

entirely representative of all patients with traumatic cSCI.

The data leveraged for our analysis was extracted from the

ACS-TQP dataset, which primarily represents patients from

hospitals equipped to meet the ACS-TQP reporting require-

ments, potentially leading to an overrepresentation of these

specific hospitals. Thus, it is possible our dataset may inher-

ently hold biases, which should be taken into account when

interpreting the results. Moreover, our study’s geographical

limitation to the United States also narrows the applicability



Fig. 5. (A). The fifteen most important features and their mean SHAP values for the model predicting the outcome in-hospital mortality with the Random

Forest algorithm. (B). The fifteen most important features and their mean SHAP values for the model predicting the outcome nonhome discharges with the

CatBoost algorithm. (C). The fifteen most important features and their mean SHAP values for the model predicting the outcome prolonged length of stay

with the Random Forest algorithm. (D). The fifteen most important features and their mean SHAP values for the model predicting the outcome prolonged

length of intensive care unit stay with the CatBoost algorithm. (E). The fifteen most important features and their mean SHAP values for the model predicting

the outcome major complications with the XGBoost algorithm.

12 M. Karabacak and K. Margetis / The Spine Journal 00 (2023) 1−14

ARTICLE IN PRESS
of our findings. In light of these limitations, it is essential to

acknowledge that the outcomes may not be universally appli-

cable or generalizable to different clinical environments
across the globe. The scope of the data sources is another

important limitation to consider. While the ACS-TQP dataset

provides exhaustive information, the reliance on a singular
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dataset potentially limits the broader applicability of our

models. Therefore, external validation using independent

datasets from diverse sources and geographical locations

would further reinforce our models’ robustness and gener-

alizability. Additionally, the potential presence of coding

errors and inaccuracies in large clinical databases, like the

one used in our study, should be taken into consideration.

For instance, the possibility of inaccuracies in the recording

of patients’ comorbidity information within the ACS-TQP

database may impact the overall performance of our models.

Finally, although our study offers a promising start, addi-

tional relevant variables such as detailed imaging parameters

might improve the performance of our ML models. The

inclusion of these specific variables could offer more

nuanced and accurate predictions for individual patient out-

comes, pushing the boundaries of precision medicine in the

context of traumatic cSCIs. To summarize, while our study

demonstrates the potential of ML in enhancing precision

medicine for traumatic cSCIs, it is incumbent to conduct fur-

ther research, including more diverse data sources and exter-

nal validation, before our models can be fully integrated into

clinical practice.

Conclusions

This study has demonstrated that ML algorithms can

effectively predict in-hospital outcomes for patients with

cSCI, and the development of a user-friendly web applica-

tion makes the integration of these algorithms into clinical

practice feasible. The results of this study show that ML

algorithms can assist in risk stratification for cSCI patients,

specifically for predicting in-hospital mortality and non-

home discharges with good discriminatory power and pro-

longed LOS with fair discriminatory ability. While their

performance in predicting prolonged ICU-LOS and major

complications was relatively poor, the potential benefits of

using ML algorithms to personalize care and predict out-

comes for cSCI patients are significant. By providing visual

explanations of the predictions, this tool can help establish

confidence in the predictions and encourage their adoption

in clinical practice. The incorporation of this tool can sup-

port quality assurance initiatives, guide treatment strategies,

prioritize care, plan for discharge needs, facilitate shared

decision-making, and ultimately improve patient outcomes.
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