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Pediatric Index of Cardiac Surgical Intensive Care
Mortality Risk Score for Pediatric Cardiac

Critical Care*
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Ohjective: Comparison of clinical outcomes is imperative in the
evaluation of healthcare quality. Risk adjustment for children
undergoing cardiac surgery poses unique challenges, due to its
distinct nature. We developed a risk-adjustment tool specifically
focused on critical care mortality for the pediatric cardiac surgical
population: the Pediatric Index of Cardiac Surgical Intensive care
Mortality score.

Design: Retrospective analysis of prospectively collected pediatric
critical care data.

Setting: Pediatric critical care units in the United States.
Patients: Pediatric cardiac intensive care surgical patients.
Interventions: Prospectively collected data from consecutive
patients admitted to ICUs were obtained from The Virtual PICU
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System (VPS, LLC, Los Angeles, CA), a national pediatric critical
care database. Thirty-two candidate physiologic, demographic,
and diagnostic variables were analyzed for inclusion in the devel-
opment of the Pediatric Index of Cardiac Surgical Intensive care
Mortality model. Multivariate logistic regression with stepwise
selection was used to develop the model.

Measurements and Main Results: A total of 16,574 cardiac surgical
patients from the 55 PICUs across the United States were included
in the analysis. Thirteen variables remained in the final model, includ-
ing the validated Society of Thoracic Surgeons-European Associa-
tion of Cardio-Thoracic Surgery Congenital Heart Surgery Mortality
(STAT) score and admission time with respect to cardiac surgery,
which identifies whether the patient underwent the index surgical
procedure before or after admission to the ICU. Pediatric Index of
Cardiac Surgical Intensive Care Mortality (PICSIM) performance
was compared with the performance of Pediatric Risk of Mortality-3
and Pediatric Index of Mortality-2 risk of mortality scores, as well as
the STAT score and STAT categories by calculating the area under
the curve of the receiver operating characteristic from a validation
dataset: PICSIM (area under the curve = 0.87) performed better
than Pediatric Index of Mortality-2 (area under the curve = 0.81),
Pediatric Risk of Mortality-3 (area under the curve = 0.82), STAT
score (area under the curve = 0.77), STAT category (area under the
curve = 0.75), and Risk Adjustment for Congenital Heart Surgery-1
(area under the curve = 0.74).

Conclusions: This newly developed mortality score, PICSIM, con-
sisting of 13 risk variables encompassing physiology, cardiovascular
condition, and time of admission to the ICU showed better discrimi-
nation than Pediatric Index of Mortality-2, Pediatric Risk of Mortal-
ity-3, and STAT score and category for mortality in a multisite cohort
of pediatric cardiac surgical patients. The introduction of the variable
“admission time with respect to cardiac surgery” allowed prediction
of mortality when patients are admitted to the ICU either before or
after the index surgical procedure. (Pediatr Crit Care Med 2015;
16:846-852)

Key Words: database analytics; mortality prediction; pediatric
cardiac intensive care; pediatric cardiac surgery; predictive
modeling; quality improvement
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omparing healthcare outcomes among populations
‘ is an important element in the evaluation of health-

care quality and benchmarking. Increasingly, provid-
ers, consumers, administrators, policy makers, and payers are
demanding evidence that healthcare services are delivered
effectively and efficiently and in accordance with current
standards of practice. Importantly, the comparison of out-
comes among centers requires adjusting for some measure
of patients’ or population’s severity of illness, such as the
population’s risk of mortality to avoid inaccurate conclu-
sions regarding quality of care and center performance. In
addition, studying populations for comparative effectiveness
research or to improve quality by comparing therapeutic
approaches requires the assurance that the populations being
studied are comparable with regard to severity of illness.
Reliable comparative analysis of outcomes depends on a clear
understanding of the factors that influence the risk of mor-
tality for populations of critically ill children so that proper
risk adjustment may occur (1).

In pediatric critical care, several physiologic-based scoring
systems have been developed for risk adjustment within clinical
datasets and among ICUs (2—4). These tools enable the establish-
ment of baseline severity-of-illness measurement that provides an
estimated mortality for the critically ill population being evaluated.
The predicted mortality may then be compared with the actual
mortality to calculate a standardized mortality ratio (SMR) to
account for the variation in severity of illness (5). There is evidence
that the performance of generic risk-adjustment tools suffers when
specific patient populations (cardiac, postoperative, leukemia, etc.)
are not similar to the heterogeneous population in which they were
developed (6). As such, pioneers in the field of risk adjustment
suggest that diagnosis-specific scores may be advantageous when
comparing the outcomes of multiple ICUs (5-9).

Risk adjustment for pediatric populations undergoing car-
diac surgery poses unique challenges. In addition to the wide
variability in surgical case complexity, variations in anatomy
may dramatically alter the degree of difficulty for a given sur-
gical procedure. Comorbidities, which are frequently encoun-
tered in patients with congenital heart disease, may often
increase the risk of mortality, independent of the surgical pro-
cedure being performed. Existing cardiac severity-of-illness
scores, such as Risk Adjustment for Congenital Heart Surgery
(RACHS), Society of Thoracic Surgeons-European Associa-
tion of Cardio-Thoracic Surgery Congenital Heart Surgery
Mortality (STAT) scores, and Aristotle scores, assess overall
cardiac surgical mortality across the entire care process but do
not assess severity of illness at admission to the ICU. Due to
the distinct nature of congenital heart surgery intensive care,
and with the advent of dedicated cardiac units, scores devel-
oped for ICU cardiac surgical populations could be expected to
perform better than nonspecific scores for comparing popula-
tions outcomes and unit performance; we sought to develop a
risk-adjustment tool specifically for the pediatric cardiac sur-
gical intensive care population, which we have termed as the
Pediatric Index of Cardiac Surgical Intensive Care Mortality
(PICSIM) score.
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MATERIALS AND METHODS

Study Sites

Data were obtained from the Virtual PICU System (VPS) data-
base (VPS, LLC, Los Angeles, CA; http://www.myvps.org), a
national pediatric critical care database. The study was deemed
to be exempt from approval by the Seattle Children’s Institu-
tional Review Board. VPS data were provided by the VPS, LLC.
No endorsement or editorial restriction of the interpretation of
these data or opinions of the authors has been implied or stated.
Data entered into VPS are entered by trained data collectors
using standardized data definitions and routinely assessed for
interrater reliability, which was greater than 93% concordance
for all data collection periods included in this study. After data
submission, all data were reviewed and validated prior to inclu-
sion in the dataset used for quality measures and for research
studies. This study focused on children with congenital heart
defects who had cardiac surgery and were discharged from either
a PICU or pediatric cardiac ICU, hereafter referred to as ICU,
which contributed data to the VPS database from July 1, 2009,
to June 30, 2012. Only data from ICUs that managed postop-
erative pediatric cardiac surgical patients and collected data for
both the Pediatric Index of Mortality (PIM)-2 and the Pediatric
Risk of Mortality (PRISM)-3 scores were included to assure the
availability of multiple physiologic and diagnostic variables to
assess for inclusion in a cardiac score. The characteristics of the
55 participating ICUs are shown in Supplemental Table 1 (Sup-
plemental Digital Content 1, http://links.lww.com/PCC/A179).

Patients

Cardiac surgical patients having surgery either before or after
admission to the ICU were selected. Patients unable to have
a STAT (10, 11) score derived from the index procedure were
excluded. Admission time with respect to cardiac surgery
(ATrS) was analyzed due to the hypothesis that physiologic
variables are different for patients admitted to a cardiac ICU
directly from the operating room as compared with those
admitted preoperatively. Neonates who went to the operat-
ing room directly from a neonatal ICU were not considered to
be admitted to an ICU preoperatively and their postoperative
physiologic data were included in the PICSIM model.

Variables

Physiologic variables that were prospectively collected within
the first hour and 12 hours of ICU admission and were used
to calculate PIM-2 and PRISM-3, respectively, were consid-
ered candidate variables. In addition, patient characteristics at
admission such as gender, patient origin, age in months, and
whether the index procedure was performed before or after
admission to the ICU were evaluated. There were 30 physi-
ologic and patient characteristics variables considered origi-
nally. In addition, two diagnosis-based criteria (also used in
PIM-2) were selected based on their clinical relevance for car-
diac surgical patients. This amounted to an initial set of 32
independent variables. Some of the continuous variables were
discretized depending on specific thresholds to 1 if YES and
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0 if NO, for example, patients having creatinine greater than
0.6 mg/dL = 1; 0 if up to 0.6 mg/dL.

Statistical Methods

Multivariate logistic regression with stepwise selection was used
to develop a model to predict mortality in the ICU for cardiac
surgical patients. The variables were chosen based on Akaike
information criterion and the Mallows Cp (12, 13). Thirteen
variables, described in Table 1, were finally selected for deter-
mination of the risk of mortality algorithm. The regression
coefficients for the selected variables were determined. Pre-
dicted mortality was modeled in the standard fashion:

Probability of Death = ;,
1+exp(-L)

where the logit (L) is a linear combination of risk factors with
the following form:

M
L=b,+ Y b xr.

=

The first term on the right side of last equation is an inter-
cept, and the second is a sum of the contributions from each
of the risk factors o appropriately weighted by a coefficient b,
which quantifies how much each risk factor contributed to the
outcome among the final 13 risk variables.

The initial cohort was randomly separated into develop-
ment and validation sets. Seventy-five percent of the initial
16,574 patients were used to determine the coefficients of
the risk variables in the logit for mortality, L, by maximiza-
tion of the likelihood function. The area under the curve

(AUC) was compared with STAT score, STAT categories,
and RACHS-1 scores. The remaining 25% of the cohort was
then used to validate the model by analyzing the receiver
operating curve (ROC) and the AUC (14). Calibration of
the PICSIM model was tested by the Hosmer-Lemeshow
goodness-of-fit test (15). The statistical analysis was done
with the R software version 2.15.3 (Vienna, Austria) (16).
The AUC was compared with STAT scores, STAT categories,
and RACHS-1 scores.

RESULTS

From a total of 123,359 ICU patients discharged from July 2009
to June 2012 in the VPS dataset, there were 16,574 cardiac sur-
gical patients from 55 PICUs. The median number of patients
included from each PICU was 188 ranging from 19 to 1,374.
Fifty-five percent of the patients were male, 60% were Cau-
casian, and most of the patients (80%) were admitted to the
ICU directly from the operating room. The median age was 7.8
months (range of 0.01 and 673.31), and 2.9% of patients were
over 18 years. Of the 16,574 patients, 428 patients (2.6%) died
in the ICU.

The results for the validation set (n = 4,143) are summa-
rized in Table 2. The SMR values suggest that PICSIM (0.92)
predicted deaths for the cardiac surgical population better than
PIM-2 (0.54) or PRISM-3 (0.84). The discrimination based on
the AUC for PICSIM (0.87) was slightly higher than the oth-
ers (0.81 for PIM-2 and 0.82 for PRISM-3). Figure 1 shows a
comparison of the ROC curves for the three models, PICSIM
(solid line), PRISM-3 (dotted line), and PIM-2 (dashed line) for
the validation set. Table 3 shows the Hosmer-Lemeshow good-
ness-of-fit calibration of the PICSIM model. Supplemental

TABLE 1. Variables Included in the Pediatric Index of Cardiac Surgical Intensive Care

Mortality

Variable

Extracorporeal membrane oxygenation within 12 hr of surgery
STAT score

Hypoplastic left heart syndrome present

Mechanical ventilation during the first hour in ICU

Fio, > 0.80

Creatinine > 0.60mg/dL

Abnormal hemoglobin < 6g/dL or > 15g/dL

Co, partial pressure greater than 55mm Hg
é‘rom arterial blood gas)

Abnormal sodium Na < 137 mmo/L or > 147 mmol/L
Patient's average respiratory rate (breaths/min) (range)
Average systolic blood pressure (mm Hg) (range)

STAT score squared

Admission time with respect to cardiac surgery

Value Type
1 ifyes; Oif no Categorical
0.1-b Continuous
1 ifyes; Oif no Categorical
1if yes; O'if no Categorical
1 if yes; O'if no Categorical
1if yes; O'if no Categorical
1 if yes; O'if no Categorical
1if yes; Oif no Categorical
1 if yes; O'if no Categorical
7-118 Continuous
=173 Continuous
0-25 Continuous
1 if preoperative; O everything else Categorical

STAT = Society of Thoracic Surgeons-European Association of Cardio-Thoracic Surgery Congenital Heart Surgery Mortality.
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TABLE 2. Standardized Mortality Ratio
and Area Under the Receiver Operating
Characteristic Curve for the Validation
Dataset (n = 4,143)

Standardized

Mortality Area Under

Severity of lliness Score Ratio the Curve

Pediatric Index of Cardiac Surgical 0.92 0.87
Intensive Care Mortality

Pediatric Index of Mortality-2 0.54 0.81

Pediatric Risk of Mortality-3 0.84 0.82

STAT score - 0.77

STAT category = 0.75

STAT = Society of Thoracic Surgeons-European Association of Cardio-
Thoracic Surgery Congenital Heart Surgery Mortality.

Dashes indicate standardized mortality ratios could not be obtained for STAT
score and STAT category as they don't yield mortality predictions in the same
manner as the other tools.

Area ROC (Validation Data Set n=4,143)

1.0

08

Sensitivity
06

0.4

. ’ Risk Model (area under ROC)
. = PICSIM (0.87)

' o - = PIM2 (0.81)

* PRISM3(0.82)

s == Reference

0.2

0.0

T T
0.0 02 04 0.6 0.8 1.0

1-Specificity

Figure 1. Receiver operating characteristic (ROC) curve for Pediatric
Index of Cardiac Surgical Intensive Care Mortality (PICSIM) versus
Pediatric Index of Mortality (PIM)-2 and Pediatric Risk of Mortality
(PRISM)-3 using the validation dataset (n = 4,143). Notice that PICSIM
has better discrimination powers than the other models.

Table 2 (Supplemental Digital Content 2, http://links.lww.
com/PCC/A180) demonstrates that calibration was accept-
able over all age ranges. In addition, we investigated the per-
formance of the PICSIM model in both ATrS (Table 4) (ROC
values of 0.87 and 0.75 for the postoperative and preoperative
admissions, respectively.)

Finally, we compared the performance of the PICSIM score
with that of STAT and RACHS-1 (17) scores (Fig. 2; Table 2;
and Supplemental Table 3, Supplemental Digital Content 3,
http://links.lww.com/PCC/A181). The discrimination based
on the AUC for PICSIM score (0.87) was higher compared with
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the STAT score as a continuous variable (0.77), the STAT cat-
egories (0.75), and RACHS-1 (0.74). However, the RACHS-1
analysis was performed with a slightly smaller number of
cases (457 less), as over 11% of the cases for which PICSIM
scores were able to be determined were unable to be assigned
a RACHS-1 score.

The SMRs of the participating institutions ranged from 0
(no deaths) to 3 (three times more deaths observed than pre-
dicted). A useful way of comparing SMRs among institutions is
the funnel plot (Fig. 3). This graphical representation of SMR
versus volume per unit is a useful format for understanding
the volume outcome relations and for assessing performance
outliers while controlling for volume among institutions (18).

DISCUSSION
This study was undertaken to develop an ICU risk of mortality
score specifically for cardiac surgical children. Many have suggested
that severity-of-illness scores would perform better in homogenous
patient populations and have demonstrated that scores developed
for the entire critical care population may not perform as well in
population subsets, such as cardiac surgical patients (4, 5, 7-9).
Several models have been developed to predict pediatric car-
diac surgical mortality based on operative complexity or anat-
omy, such as RACHS-1 score (17), Aristotle Complexity Score
(19), and the STAT score (10, 11). Nonetheless, none of these
scores assess the physiologic condition and severity of illness at
the time of admission to the ICU. PICSIM is the first attempt to
combine physiologic, anatomic, and procedural variables avail-
able at the time of ICU admission to predict ICU mortality. The
PICSIM variables include indicators of cardiac anatomy and risk
(STAT score, hypoplastic left heart syndrome), cardiorespiratory
function (respiratory rate, blood pressure, Fio,, and mechani-
cal ventilation), renal function (creatinine), and laboratory tests
(sodium and hemoglobin). Thus, PICSIM includes variables
relevant to multiple systems as well as cardiac surgical risk. In
addition, the ATrS variable allowed the timing of surgery to be
considered. This inclusion of physiologic, cardiac diagnostic,
and procedure information found in the aforementioned con-
genital heart surgery scores may better predict ICU mortality.
As evidenced by improved SMRs and the AUC of the ROC,
PICSIM demonstrated improved utility and better discrimina-
tion compared with PIM-2 and PRISM-3. This improved per-
formance may be due to the inclusion of variables not included
in either PRISM-3 or PIM-2, notably the STAT score and ATrS. A
further reason for improved performance may be that it was cal-
ibrated specifically in a cardiac surgical population. In addition,
PICSIM was found to have improved discrimination compared
with the STAT score, STAT categories, and RACHS (Fig. 2).
Interestingly, our analyses yielded area under the ROC curve
results similar to the initial description of the STAT score and
STAT category by O’Brien et al (10). Taken together these results
indicate that the PICSIM score is more suitable for predicting
ICU mortality and therefore more appropriate for assessing ICU
performance for cardiac patients than previous methods.
Another advantage of PICSIM is that it has been developed in
a large diverse population from 55 ICUs representing 28 states,
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TABLE 3. Hosmer-Lemeshow Goodness-of-Fit Test for the Test Set Stratified by Deciles

Pediatric Index of
Cardiac Surgical

Intensive Care

Probability of Death

Observed Expected

Mortality Decile Minimum Maximum Survived Died Survived
1 414 0.0002 0.0018 413 1 4135 05
2 415 0.0018 0.0028 412 3 414.0 1.0
3 414 0.0028 0.0040 414 0 412.6 1.4
4 414 0.0040 0.0055 414 0 412.1 19
5 415 0.0055 0.0076 412 3 4123 2.7
6 414 0.0076 0.0109 412 2 4102 3.8
7 414 0.0109 0.0157 411 3 408.6 5.4
8 414 0.0157 0.0268 408 6 405.5 85
9 415 0.0268 0.0540 398 17 399.5 15.5

10 414 0.0540 0.8404 354 60 3519 62.1

Total 4,143 0.0002 0.8404 4,048 95 4,040.2 102.8

Chi-square = 11.1; p = 0.20. p value of the fit is 0.2, which shows the model calibrates appropriately.

TABLE 4. Discrimination and Goodness-
of-Fit Validation for the Preoperative

and Postoperative (Admission Time With
Respect to Cardiac Surgery) Subsets in the
Validation Dataset

Admission Time With Area

Respect to Cardiac Under the Hosmer-
Surgery Curve Lemeshow, p
PICSIM preoperative 746 0.75 0.49
PICSIM postoperative 3,397 0.87 0.22

PICSIM = Pediatric Index of Cardiac Surgical Intensive Care Mortality.

including patients from small to large ICUs, with or without fel-
lowship programs, general and pediatric free-standing hospitals,
demographically and age diverse, thus ensuring wide applicabi-
lity in the cardiac surgical population.

There are some limitations to this study. First, PICSIM
needs to be validated over time for continued reproducibil-
ity and could be subject to the same “drift” (20) reported
in other prediction models. Second, only variables avail-
able in the VPS dataset were used—potentially prospective
collection of other variable could improve performance of
PICSIM. Third, the model was validated in a cohort of U.S.
hospitals and should be validated internationally. Fourth,
only those VPS centers that collected PRISM-3 variables were
included in the study, which limited the number of eligible
sites and may have introduced selection bias. Fifth, although
the data used to develop this model were obtained from a
high-quality clinical dataset, the potential for misclassifica-
tion bias remains. Sixth, discrimination and calibration for
PICSIM in the preoperative population were rather modest
compared with the postoperative population (AUCs, 0.75
850
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Figure 2. Receiver operating characteristic (ROC) curve for Pediatric
Index of Cardiac Surgical Intensive Care Mortality (PICSIM) versus Society
of Thoracic Surgeons-European Association of Cardio-Thoracic Surgery
Congenital Heart Surgery Mortality (STAT) score and STAT categories
using the validation dataset (n = 4,143).

and 0.87, respectively) (Table 4). These two populations are
fundamentally different; the preoperative admission cohort,
in addition to not having had surgery, tends to be neo-
nates with greater mortality (5%), whereas the postopera-
tive cohort is older with lower mortality (1.5%). Although
inclusion of the ATrS term improved PICSIM performance
and permitted one score overall, we advise repeating the
PICSIM score following surgery to more accurately reflect
the risk of mortality postoperatively. Finally, our approach
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Figure 3. Standard funnel plot showing standardized mortality ratio
(SMR) versus volume per unit. It simplifies the determination of outliers
when comparing performance among institutions.

used classic regression analysis, similar to the majority of
severity-of-illness tools, to develop PICSIM. Newer statistical
approaches, such as machine learning (21-24), to discover
relationships between multiple variables and outcomes were
not explored. Future application of these newer promising
“big data” (25) approaches may provide better understand-
ing of severity-of-illness scoring in pediatric critical care.

Severity-of-illness scores, like PICSIM, are necessary for explor-
ing efficiency and efficacy of ICU care (26, 27). The SMR is a cor-
nerstone in benchmarking ICU quality and requires a prediction
of mortality score (28). Benchmarking allows comparison among
ICUs and internal tracking of improvements in care over time in a
given ICU to establish standards for measuring performance and
quality, which cannot be improved without appropriate assessment.
The PICSIM score can be used to compare ICU performance for
cardiac patients adjusting for differences in predicted mortality in a
similar fashion to how PIM and PRISM have been used to improve
quality for over 30 years (1, 5, 6, 8). As Angus et al (29) editorial-
ized, “it is inevitable, and perhaps desirable, that scoring and risk
prediction systems will increasingly become the judges of our clini-
cal activities” Additionally, severity-of-illness adjustment is neces-
sary to compare study cohorts to assure similar mortality in study
groups for comparative effectiveness and other research to improve
cardiac critical care or to explore the volume outcomes relationship
among ICUs as suggest by the funnel plot (Fig. 3). Although not yet
explored with PICSIM, Pollack and Getson (30) have demonstrated
that daily tracking of individual SOI scores can reduce costs and
improve efficiency in PICUs. The congenital cardiac care process
begins at birth with diagnosis and continues with cardiology care,
surgical evaluation, and correction with cardiopulmonary bypass
through intensive care and into postsurgical follow-up. All steps of
this process must be evaluated to guide improvement of the qual-
ity of the care provided for these children. This implies that at each
care transition, accurate specific assessment of severity of illness
will allow measurement not only of the physiologic status resulting
from the preceding stage but also a baseline to compare outcomes
of each stage. Thus, PICSIM provides an immediate postoperative
assessment that serves as the baseline for the care provided in the
ICU. PICSIM is the first specific cardiac SOI tool combining ana-
tomic and physiologic factors assessed at admission to the ICU to
enable these multiple approaches to improving the care provided
for cardiac surgical patients in ICUs.
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