

Health Information Technology Department
Mashhad University of Medical Sciences

In the name of God

Mashhad University of
Medical Sciences

Hypertension Health Promotion Via Text Messaging Community Health Center In South Africa: A Mixed Methods Study

Lecturer Name: Fereshte Manouchehri

Supervisor Name: Dr. Masoume Sarbaz

Email Address: manouchehrif961@mums.ac.ir

JMIR mHealth and uHealth

- Journal Of Medical Internet Research mobile Health and ubiquitous health
- Journal impact factor: **4.636**
- Quartile: **Q₁**
- Language: **English**
- Country of Publication: **Canada**
- Abbreviation: **JMIR mHealth and uHealth**

Author Information

Damian Hacking, MPH

- Health and Human Rights Programme
- Department of Public Health and Family Medicine
- University of Cape Town
- South Africa
- Phone: 27 848238040
- Fax: 27 21 364 5490
- Email: [damianuct\[at\]gmail.com](mailto:damianuct[at]gmail.com)

CORRESPONDING AUTHOR

Hacking, Damian

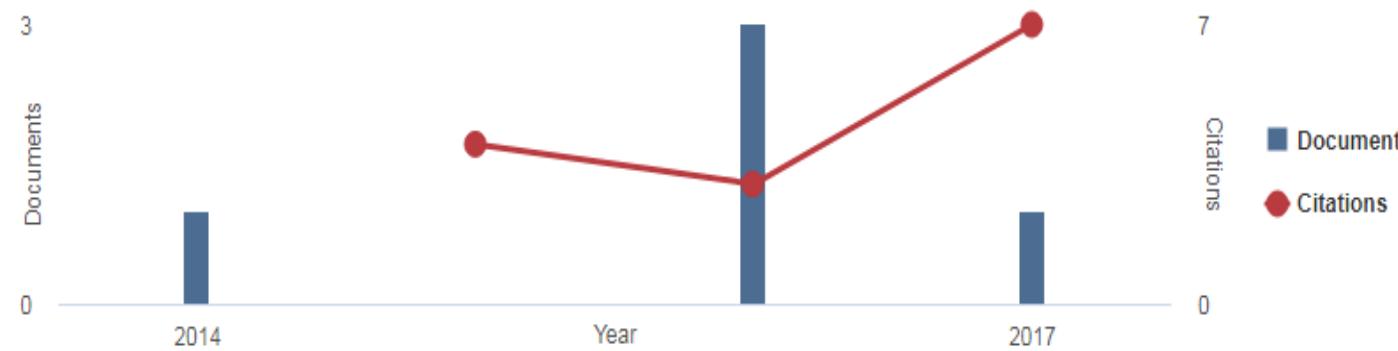
University of Cape Town, Faculty of Health Sciences, Health and Human Rights Division, Cape Town, South Africa

Author ID: 37033936600

Other name formats: Hacking, D.

[Follow this Author](#)

[View potential author matches](#)


h-index: ②

1

[View *h*-graph](#)

Subject area: [Medicine](#) [Social Sciences](#) [Psychology](#)

Document and citation trends:

Documents by author

5

[Analyze author output](#)

Total citations

14 by 14 documents [View citation overview](#)

KEYWORDS

- Telemedicine
- health knowledge
- attitudes
- practice
- developing countries
- hypertension

INTRODUCTION

- **mHealth**, the use of mobile phones to support health care, is often seen to have great potential, as mobile technology has a high prevalence, with **6.8 billion** subscriptions worldwide(2013). This extends to the developing world, with **Africa** having the fastest growing market for cell phone technology , and **over 75%** of the low-income South African population already owning, or having access to, a cell phone number.

INTRODUCTION

- However, there are **few evaluations** that thoroughly investigate the viability of the mHealth intervention, typically drawing on either quantitative or qualitative data, but not both. Furthermore, **cost-effectiveness**, context, and **acceptability** are still contentious issues, and therefore, even though strong potential exists, the viability of mHealth interventions in all situations is **not clear** and further investigation into such matters is still merited .

INTRODUCTION

- The use of mHealth interventions in the control and management of **non-communicable diseases** is relatively well established; however, there is a paucity of research on its viability from lower-middle-income countries .Hypertension is one of the many non-communicable diseases on the rise in the developing world, including South Africa, where the prevalence is **approximately 21%**.

INTRODUCTION

- It is further exacerbated by socioeconomic factors that encourage **poor diet** and **sedentary lifestyles** and contribute to **low knowledge levels** (both of risk factors and treatment) amongst the poorer urban population, which ultimately increases complications in hypertension. **Low knowledge levels** in hypertensive patients are one of the key barriers to hypertensive care.

INTRODUCTION

- Furthermore, there is a particular demand for lifestyle modification information in South Africa , and treatment and control of non-communicable diseases are part of **South Africa's National Development Plan** .

INTRODUCTION

- This paper therefore seeks to test whether the dissemination of health information via SMS leads to improvements in **health knowledge** and self-reported **health-related behaviours** amongst chronic hypertensive patients in a resource-poor setting.

METHODS

- An SMS campaign consisting of both **knowledge** and **lifestyle** information was designed. A mixed methods approach that employed a **controlled clinical trial** and **a focus group** evaluated the SMS campaign. The project was approved by the University of Cape Town's Health Sciences Faculty Human Research Ethics Committee (HREC REF 043/2011).

Recruitment And Study Setting

Participants (n=223) were recruited from a chronic hypertension outpatient clinic support club at a community health center in the Gugulethu township of Cape Town. Gugulethu is a densely populated poor urban settlement with 95.5% of dwellers speaking Xhosa as their mother tongue, 35% unemployment with an average yearly household income of US \$3300 (2001), and the majority falling within an age range of 20-34 years.

Recruitment And Study Setting

Participants were assigned to experiment (n=109) or control groups (n=114) alternating in order of recruitment. To ensure informed consent, fieldworkers used an information sheet and consent form to brief participants about the project in their language of choice—either English or Xhosa. The intervention group received the SMSes, and the control group received standard of care and no SMSes. All participant data were stored safely either in a locked cupboard or on a secure, password-protected cloud server.

TEXT MESSAGING

SMsEs were designed in conjunction with health promoters and staff at the Gugulethu Community Health Centre, and reviewed by academics and clinicians from the Department of Family Medicine at the University of Cape Town. The SMsEs were then translated from English into Xhosa and back translated to ensure that the meaning of the message was accurately preserved. A total of 90 SMsEs were created and disseminated over 17 weeks and included 2 introductory SMsEs and reminders of the option to opt out. Information in the SMsEs covered knowledge of hypertension and healthy lifestyle suggestions. “Did you know” introduced the knowledge SMsEs and “Health Tips,” the lifestyle SMsEs.

INFORMATION IN THE SMS

Did you know? Normal blood pressure is said to be 120/80. Remember to ask your health care provider if you have any questions or need more information.

knowledge
SMSes

Health tip: Let's get started. A good way to lower BP is to exercise.

lifestyle
SMSes.

Knowledge And Self-reported Behaviour Change Assessment

Control and intervention arm participants were administered a preintervention multiple-choice questionnaire (26 questions). The questionnaire explored demographic profiles (7 questions) and baseline knowledge of symptoms, risk factors, health behaviour, and how to control hypertension (19 questions).

After the intervention, the same questionnaire was administered to participants in both the control and intervention groups, with additional behaviour-related questions administered to the intervention group.

SCORING

The scoring was as follows: for the questions that had **1 correct answer**, a score of **1** was assigned if the participant chose the correct answer, and a score of **-1** if they chose the **incorrect answer** or a score of **0** if they answered that they did not know. For the questions where participants could give more than 1 answer, the number of incorrect answers was subtracted from the number of correct answers.

QUESTIONNAIRE

9: What is normal blood pressure?

- a) 120/80
- b) 130/80
- c) 90/70
- d) 140/100
- e) Don't know

10: What puts you at risk of developing high blood pressure?

- a) Smoking
- b) Drinking
- c) Unhealthy diet
- d) Too little exercise.
- e) Too much exercise.
- f) Eating too little

FOCUS GROUP

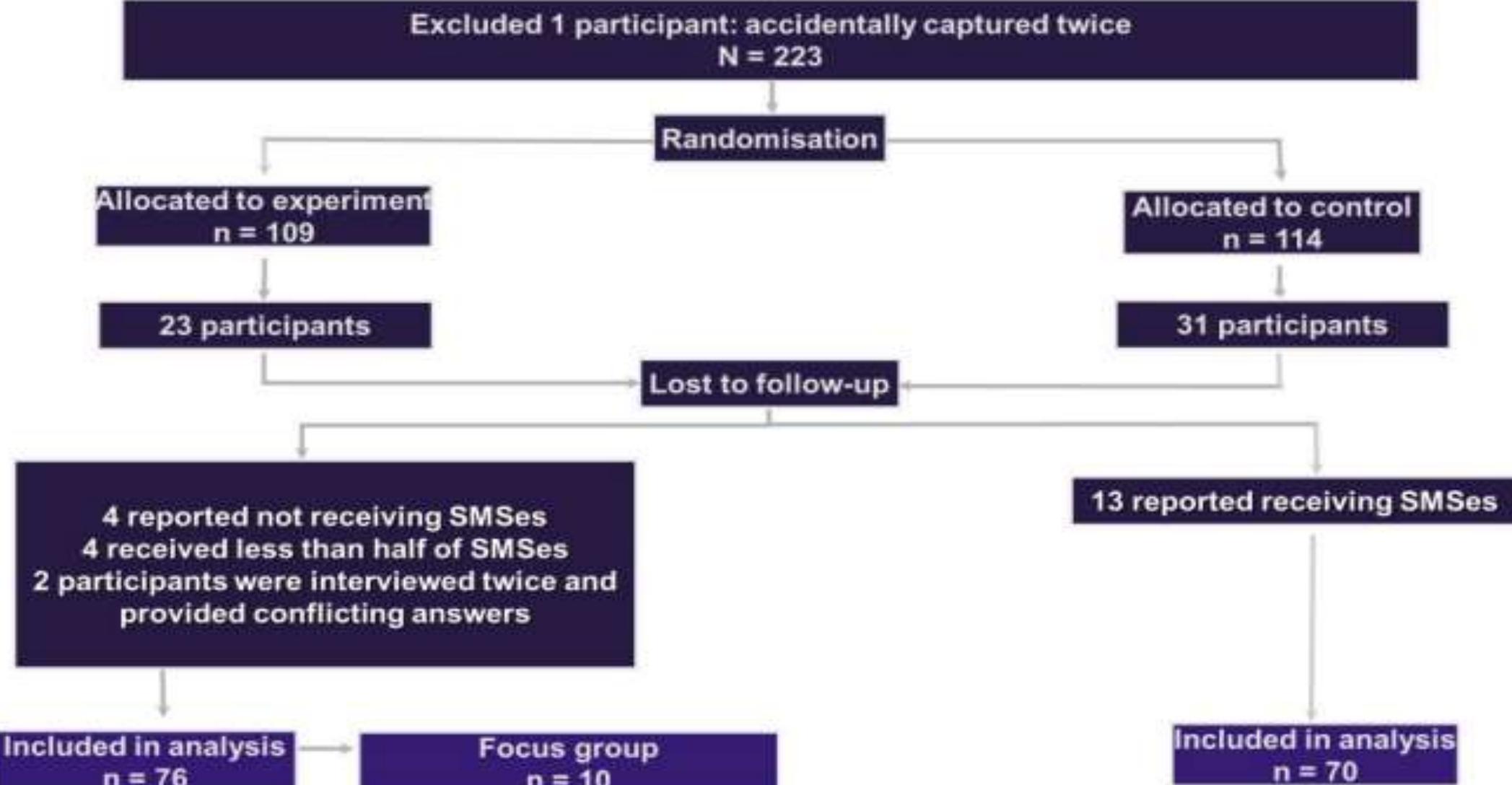
In order to further explore the results from the questionnaire, 7 participants who received SMSes partook in a 2-hour focus group, held at the community health center . Participants were chosen at random and invited via phone call until a **total of 10** had confirmed, although only 7 arrived on the day. The focus group was conducted by 1 investigator, observed by 1 research assistant, and recorded using a Dictaphone and note taking.

FOCUS GROUP

A language translator was present at the focus group, allowing participants to communicate in the language of their choice. The topics explored knowledge change, the impact and efficacy of SMSes, and the relationship between SMS receipt and behaviour change, and are outlined in the focus group discussion guide. Recordings were transcribed and thematic analysis was carried out in consultation with the investigator's and researcher's notes.

STATISTICAL ANALYSIS

Fisher's exact tests were performed to determine statistical difference between the control and intervention groups for all questions, except for the questions that had multiple correct answers, in which case, 2 sample t tests were performed. Statistical significance was set at $p < .05$.


RESULTS

- Participants

In total, 224 participants were recruited .Of the 224 participants, 1 was a duplicate and 54 (24%) were lost to follow-up between baseline and exit interview (23 in the intervention arm and 31 in the control arm); a further 10 in the intervention arm were excluded from analysis for reporting receiving fewer than half the SMSes or being accidentally interviewed in duplicate and giving conflicting answers; while 13 were excluded in the control arm as they reported erroneously receiving SMSes at the exit interview .

Recruited participants, demographic data obtained via interviews and patient folders
N = 224

Table 1. Comparison of baseline demographics and knowledge scores between control and intervention groups.

	Intervention	Control	Overall sample
Age – Mean (range)	54.23 (27.9-86.19)	54.44 (26.81-92.15)	54.34 (26.81-92.15)
Gender – N (%)			
Female	79 (77.45%)	85 (82.52%)	164 (80.0%)
Male	23 (22.55%)	18 (17.48%)	41 (20.0%)
Language – N (%)			
Xhosa	66 (60.55%)	72 (63.16%)	138 (61.88%)
English	43 (39.45%)	40 (35.09%)	83 (37.22%)
Afrikaans	0 (0.0%)	2 (1.75%)	2 (0.90%)
Marital status – N (%)			
Married	48 (44.04%)	47 (41.23%)	95 (42.60%)
Single living with partner	5 (4.59%)	3 (2.63%)	8 (3.59%)
Single living with family	47 (43.12%)	51 (44.74%)	98 (43.95%)
Single living with others	2 (1.83%)	2 (1.75%)	4 (1.79%)
Divorced	3 (2.75%)	1 (0.88%)	4 (1.79%)
Widow or widower	4 (3.67%)	10 (8.77%)	14 (6.28%)

Education – N (%)

Below Grade 7	20 (18.35%)	26 (22.81%)	46 (20.63%)
Between Grade 7 and 12	63 (57.80%)	62 (54.39%)	125 (56.05%)
Passed matric	23 (21.10%)	24 (21.05%)	47 (21.08%)
No matric but diploma	2 (1.83%)	1 (0.88%)	3 (1.35%)
Postmatric qualification	1 (0.92%)	1 (0.88%)	2 (0.90%)

Employment status – N (%)

Unemployed	55 (50.46%)	48 (42.11%)	103 (46.19%)
Employed	26 (23.85%)	32 (28.07%)	58 (26.01%)
Pension	27 (24.77%)	34 (29.82%)	61 (27.35%)
Not looking for employment	1 (0.92%)	0 (0.0%)	1 (0.45%)

Monthly income – N (%)

None	24 (22.02%)	18 (15.79%)	42 (18.83%)
Less than R4000	26 (23.85%)	32 (28.07%)	58 (26.01%)
R4000-R10,000	1 (0.92%)	2 (1.75%)	3 (1.35%)
Pension or social grant	58 (53.21%)	62 (54.39%)	120 (53.81%)

Hypertensive knowledge score – Mean (range)

8.77 (1-15)

8.54 (2-16)

8.65 (1-16)

Health-seeking behavior score – Median (range)

8 (2-10)

8 (4-11)

8 (2-11)

Overall score – Median (range)

17 (3-24)

16 (8-22)

17 (3-24)

Knowledge And Self-reported Behaviour Changes

Overall, no significant changes in knowledge were observed between the control and intervention arms at exit. However, in the individual questions, the intervention arm demonstrated a significantly higher knowledge of what to do in terms of medication adherence when they leave Cape Town, their place of residence, for an extended duration (81% vs 94%, $p<.05$). This is an important piece of knowledge, as there is a high seasonal migration of this population from Cape Town to the more rural Eastern Cape province of South Africa during holiday periods.

QUESTION

10. When you leave Cape Town, which one of the following is right?

- a) Stop taking your medication
- b) Go to the clinic to get enough medication for the time you will be away
- c) Get medication from a clinic where you are going
- d) Don't know

Table 2. Knowledge scores for control and intervention groups at exit.

Question	Control score	Intervention score	P value
Condition questions overall score (observed range)	9.71 (5-13)	9.6 (6-15)	.77
-What is high blood pressure? (% correctly answered)	59%	49%	.06
-What is normal blood pressure?	59%	73%	.31
-What puts you at risk for developing high blood pressure? (score)	2.897	2.744	.45
-Does everybody who has high blood pressure have symptoms?	56%	62%	.20
-What complications may you prevent by managing your high blood pressure?	1.176	1.103	.67
-Can you stop taking your medication without asking your doctor?	97%	92%	.38
-Can high blood pressure be cured?	87%	87%	.79
-When you leave Cape Town, which one of the following is right?	81%	94%	.03
-If you have high blood pressure, contact the clinic if you have which of the following symptoms?	1.25	1.19	.68
Behavior questions overall score (observed range)	7.78 (5-10)	8.05 (6-10)	.15
-Can you reduce your blood pressure?	91%	94%	.89
-Is smoking good or bad if you have high blood pressure?	99%	99%	>.99
-Is keeping a normal weight important if you have high blood pressure?	99%	96%	.62
-How much should you drink, if at all, if you have high blood pressure?	51%	56%	.64
-How much should you exercise 3 days a week?	29%	28%	.12
-What are the best ways to manage your stress?	1.221	1.372	.14
-Do eating habits affect blood pressure?	74%	85%	.07
-Is salt good or bad for a person with high blood pressure?	18%	12%	.54
-What should you cut down on if you have high blood pressure?	99%	99%	>.99
-Are vegetables and fruit good for a person with high blood pressure?	99%	100%	.22
Overall score (observed range)	17.5 (11-23)	17.7 (13-23)	.69

P-value

Self-reported Behaviour Change

Positive self-reported behavior change was reported by participants in the SMS intervention for all categories questioned.

Self-reported Behaviour Changes For Intervention

Table 3. Self-reported behavior changes for intervention arm.

Behavior change	Self-reported answer (%)			
	Yes	No	Don't know	N/A
Have you stopped smoking since the SMS campaign?	13	0	1	86
Have you lost weight since the SMS campaign?	58	28	5	9
Have you reduced your alcohol intake since the SMS campaign?	12	6	3	79
Have you increased your exercise since the SMS campaign?	81	12	1	6
Have you started eating healthier since the SMS campaign?	88	5	3	4
Have you reduced your consumption of red meat since the SMS campaign?	65	9	8	18
Have you increased your consumption of fruit and vegetables since the SMS campaign?	87	1	1	10
Have you reduced your salt intake since the SMS campaign?	63	3	10	24

FOCUS GROUP RESULTS

All participants in the focus group reiterated the self-reported behaviour change results. Thematic analysis found that the SMSes were generally viewed in a positive light, with 4 themes being elucidated:

- Firstly , the SMSes were viewed not as a source of new information, but rather as a motivation for change, which was felt to be extremely useful.

FOCUS GROUP RESULTS

Ok, for me since I hear this thing time and again, wherever I go, I go to Groote Schuur [hospital], I go to Victoria hospital, even here and see dieticians, wherever I go, I am told these things, but I never took them seriously. But the SMSes made me believe in all the things that I've been told all the time, and made me took the matters on my own hands. You know, like I took them seriously, and do everything. Because sometimes I do get pamphlets to read and read them and realise that they are related to everything that the SMSes are telling you what to do, but the SMSes made me took matters into my own hands, and do things right.

FOCUS GROUP RESULTS

- Many participants thus suggested that the SMSes functioned as a reminder to change, which emerged as the second theme:

I did know before, but a lot because it [the SMSes] always come and remind me so I was, always my mind was always pressured on, so it was good for me. As I received the SMSes, especially where they were telling me on what to eat, and what to reduce, on like salt, and then about what kind of fat, margarine or soft butter you must use, I have changed, everything according to what the SMSes were telling me. And, ever since I got on this project I have managed to lose a little bit of weight.

FOCUS GROUP RESULTS

- Thirdly, when the participants were asked why the SMSes motivated them, they described the SMSes as “trustworthy” and “caring” and felt like they were being looked after:

because those people [researchers] that took our particulars were from the University of Cape Town, they were very educated people. They are like doctors to us, you know; got a lot of information on how to keep our health, keep uh, healthy

FOCUS GROUP RESULTS

- Lastly, they also stressed that SMSes were readily available compared with other forms of information; participants felt that **having the information on their mobile phone was more useful than getting a pamphlet or getting information from health professionals:**

I did get the information from the dietician, but I did not follow up. When you are getting the SMSes it's a reminder, it's on your phone. You can always read your messages, it always reflects. So it is easy for you to follow-up than being told full scale listening to someone. It's between you and your phone, there's no one next to you, so by reading you are thinking back of your mind 'I think I will try to do this one'.

DISCUSSION

The results demonstrated almost no differences in knowledge between the control and intervention arms at exit, with the exception of 1 question. Self-reported **behaviour change** in the intervention group showed significant trends toward **healthier lifestyles**. This observation was confirmed by focus groups, which emphasized the utility of the **SMSes** as a reminder, and a source of motivation to change, rather than a source of new knowledge.

DISCUSSION

There are a few possible explanations for no observed difference in knowledge results between the control and intervention groups. Firstly, the survey questions may not have been suitable in assessing participants' knowledge; they were not sufficiently difficult for measuring a change. Census data on baseline education levels for our population demographic indicate the majority have not finished secondary schooling, and this informed the design of our survey questions.

DISCUSSION

Secondly, methodological issues were encountered with the SMSes service delivery. On average, 29.7% of SMSes failed to deliver to the intervention group. This was due to the service provider and casts doubt on the validity of the results.

Lastly, loss to follow-up was also a significant problem, which reduced the statistical power of the results.

DISCUSSION

The findings do nonetheless suggest that SMSes are effective in motivating behaviour change. However, there is a high potential for bias, as only self-reported behaviour changes were reported. The health behaviour change results could not be confirmed objectively with blood pressure and weight changes before and after the intervention, due to poor medical record keeping in patient clinic folders. While the focus group findings supported the self-reported behaviour change findings from the questionnaire, the same self-reporting biases exist, and there may also be selection bias at play in the focus group, as participants self-selected into the focus group.

DISCUSSION

In conclusion, the results suggest that **more research** is required before implementing SMS interventions for chronic disease in developing countries, and that any intervention should be entered with caution, realizing some of the limitations of the developing world. Firstly, the infrastructure for their successful implementation may not be available, a problem experienced in this intervention by a high **SMS** delivery failure rate.

DISCUSSION

Secondly , they may not be a necessary , or good, vehicle for knowledge dissemination. However, SMSes do appear to act as a reminder for the patient, and participants reported they felt they were being better looked after by receiving the SMSes, and that the SMSes were cueing positive health-related behaviour changes.

DISCUSSION

This could potentially make them a very useful tool for assisting in the management of chronic conditions. Future studies should incorporate objective measures of behaviour change, such as weight and blood pressure changes. Recent trials have also suggested that personalization of the SMSes and tailoring toward the individual receiving the SMS can have a marked improvement on outcomes, a theme that could also be explored in future work .

Thanks for Your Attention

**Health Information Technology Department
Mashhad University of Medical Sciences**

Lecturer Name: Fereshte Manouchehri

Email Address: manouchehrif961@mums.ac.ir